Journal of the European Optical Society - Rapid publications, Vol 10 (2015)

Simple quasi-common path point diffraction interferometer with adjustable fringe contrast and carrier frequency

F. Z. Bai, Y. Miao, H. Guo, X. J. Gao, X. Q. Wang


This paper presents a simple quasi-common path point diffraction interferometer (PDI) that allows fringe contrast and fringe spatial frequency to be adjusted conveniently. The novel aspect of this PDI is the use of a polarizer with pinhole as the PDI mask - and then, with a compact circular optical setup, reference and measurement waves are obtained. Furthermore, a linear tilting modulation is added into two interfering waves and adjusted easily by tilting the polarizing beam splitter - and hence the Fourier transform method can be perfectly applied to extract the wavefront phase from the captured fringe pattern, with the highest fringe contrast and suitable carrier frequency. Detailed theoretical analysis and experimental results are presented.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2015.15042]

Full Text: PDF

Citation Details

Cite this article


H. Medecki, E. Tejnil, K. A. Goldberg, and J. Bokor, ”Phase-shifting point diffraction interferometer,” Opt. Lett. 21 , 1526–1528 (1996).

J. D. Barchers, D. L. Fried, D. J. Link, G. A. Tyler, W. Moretti, T. J. Brennan, and R. Q.Fugate, ”The performance of wavefront sensors in strong scintillation,” Proc. SPIE. 4839, 217–227 (2003)

J. Notaras, and C. Paterson, ”Point-diffraction interferometer for atmospheric adaptive optics in strong scintillation,” Opt. Commun. 281 , 360–367 (2008).

R.N. Smartt, and W.H. Steel, ”Theory and application of pointdiffraction interferometers,” Jpn. J. Appl. Phys. 14, 351–356 (1975).

H. Kihm, and Y. W. Lee, ”Double-pass point diffraction interferometer,” Meas. Sci. Technol. 21 , 105307 (2010).

C. R. Mercer, and K. Creath, ”Liquid-crystal point-diffraction interferometer for wave-front measurements,” Appl. Optics 35, 1633–1642 (1996).

C. R. Mercer, and K. Creath, ”Liquid-crystal point-diffraction interferometer,” Opt. Lett. 19, 916–918 (1994).

M. J. Guardalben, and N. Jain, ”Phase-shift error as a result of molecular alignment distortions in a liquid-crystal point- diffraction interferometer,” Opt. Lett. 25, 1171–1173 (2000).

M. Paturzo, F. Pignatiello, S. Grilli, S. D. Nicola, and P. Ferraro, ”Phase-shifting point-diffraction interferometer developed by using the electro-optic effect in ferroelectric crystals,” Opt. Lett. 31 , 3597–3599 (2006).

H. Furuhashi, A. Shibata, Y. Uchida, K. Matsuda, and C. P. Grover, ”A point diffraction interferometer with random-dot filter,” Opt. Commun. 237, 17–24 (2004).

M. V. R. K. Murty, ”A compact radial shearing interferometer based on the law of refraction,” Appl. Optics 3, 853–857 (1964).

N. T. Gu, L. H. Huang, Z. P. Yang, and C. H. Rao, ”A single-shot common-path phase-stepping radial shearing interferometer for wavefront measurements,” Opt. Express 19, 4703–4713 (2011).

Y. Liu, F. Z. Bai, Y. Q. Wu, S. M. Gan, Z. Liu, and X. Y.Bao, ”A common-path radial shearing phase-shifting interferometer with adjustable fringe contrast,” Acta Optica Sinica 33, 0622003 (2013).

F. Z. Bai, X. Q. Wang, K. Z. Huang, N. T. Gu, S. M. Gan, and F. Tian, ”Analysis of spatial resolution and pinhole size for single-shot point-diffraction interferometer using in closed-loop adaptive optics,” Opt. Commun. 297, 27–31 (2013).

F. Z. Bai, and C. H.Rao, ”Effect of pinhole diameter on correction accuracy of closed-loop adaptive optics system using selfreferencing interferometer wavefront sensor,” Acta Phys. Sin-CH ED 59, 8280–8286 (2010)

D. D. Wang, Y. Y. Yang, C. Chen, and Y. M. Zhuo, ”Point diffraction interferometer with adjustable fringe contrast for testing spherical surfaces,” Appl. Optics 50, 2342–2348 (2011).

M. Takeda, H. Ina, and S. Koboyashi, ”Fourier transform methods of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982)

M. Takeda, and K. Mutoh, ”Fourier transform profilometry for the automatic measurement 3-D object shapes,” Appl. Optics 22, 3977–3982 (1983).

F. Z. Bai, and C. H. Rao, ”Experimental validation of closed-loop adaptive optics based on a self-referencing interferometer wavefront sensor and a liquid-crystal spatial light modulator,” Opt. Commun. 283, 2782–2786 (2010).

R. J. Green, J. G. Walker, and D. W. Robinson, ”Investigation of the Fourier-transform method of fringe pattern analysis,” Opt. Lasers Eng. 8, 29–44 (1988).

M. Kujawinska, and J. Wojciak, ”High accuracy Fourier transform fringe pattern analysis,” Opt. Lasers Eng. 14, 325–339 (1991).