Journal of the European Optical Society - Rapid publications, Vol 10 (2015)

Hollow waveguides as polarization converting elements: a theoretical study

S. F. Helfert, A. Edelmann, J. Jahns

Abstract


Subwavelength apertures in a metallic film act as hollow waveguides. By using a non-quadratic cross-section, an anisotropic transmission behaviour results for the two polarization states. Thus, an array of metallic subwavelength apertures may be used as polarization converter, e.g., as a half-wave plate. By varying orientation and shape of the cross-sections locally, one can design polarization shifting elements for complex wave fields. Here, we present a theoretical consideration on the physical properties and compare with dielectric form birefringence.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2015.15006]

Full Text: PDF

Citation Details


Cite this article

References


P. B. Phua, W. J. Lai, Y. L. Lim, K. S. Tiaw, B. C. Lim, H. H. Teo, and M. H. Hong, ”Mimicking optical activity for generating radially polarized light,” Opt. Lett. 32 376–378 (2007).

A. K. Kaveev, G. I. Kropotov, E. V. Tsygankova, I. A. Tzibizov, S. D. Ganichev, S. N. Danilov, P. Olbrich, C. Zoth, E. G. Kaveeva, A. I. Zhdanov, A. A. Ivanov, R. Z. Deyanov, and B. Redlich, ”Terahertz polarization conversion with quartz waveplate sets,” Appl. Optics 52 B60–B69 (2013).

E. Hasman, V. Kleiner, G. Biener, and A. Niv, ”Space-variant polarization-state manipulation with computer-generated subwavelength gratings,” Proc. SPIE 4984, 171–185 (2003).

G. M. Lerman and U. Levy, ”Generation of a radially polarized light beam using space-variant subwavelength gratings at 1064 nm,” Opt. Lett. 33 2782–2784 (2008).

S. Rothau, I. Harder, O. Lohse, and N. Lindlein, ”Künstliche nanostrukturierte Polarisationselemente,” in DGAO-Proc., 114 B6 (Deutsche Gesellschaft für angewandte Optik e.V., Braunschweig, 2013).

L. Wang, S. Jiang, H. Hu, H. Song, W. Zeng, and Q. Gan, ”Artificial birefringent metallic planar structures for terahertz wave polarization manipulation,” Opt. Lett. 39 311–314 (2014).

Z. Ozer, F. Dincer, M. Karaaslan, and O. Akgol, ”Asymmetric transmission of linearly polarized light through dynamic chiral metamaterials in a frequency regime of gigahertz-terahertz,” Opt. Eng. 53 075109 (2014).

M. Stalder and M. Schadt, ”Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21 1948–1950 (1996).

S. Quabis, R. Dorn, and G. Leuchs, ”Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B - Lasers O. 81 597–600 (2005).

H. Ren, Y.-H. Lin, and S.-T. Wua, ”Linear to axial or radial polarization conversion using a liquid crystal gel,” Appl. Phys. Lett. 89 051114 (2006).

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jack, ”Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32 1468–1470 (2007).

K. Wang and D. M. Mittleman, ”Metal wires for terahertz wave guiding,” Nature 432 379–379 (2004).

Q. Cao and J. Jahns, ”Azimuthally polarized surface plasmons as effective terahertz waveguides,” Opt. Express 13 511–518 (2005).

A. Edelmann, L. Möller, and J. Jahns, ”Coupling of terahertz radiation to metallic wire using end-fire technique,” Electron. Lett. 49 884–886 (2013).

E. Hecht, Optics, 4th ed. (Addison-Wesley, San Francisco, 2001).

S. Masuda, T. Nose, and S. Sato, ”Optical properties of a polarization converting device using a nematic liquid crystal cell,” Opt. Rev. 2 211–216 (1995).

R. E. Collin, Field Theory of Guided Waves, 2nd ed. (IEEE press, New York, 1991).

R. Pregla, Analysis of Electromagnetic Fields and Waves - The Method of Lines (Wiley & Sons, Chichester, UK, 2008).