Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

Theoretical investigation on the scale factor of a triple ring cavity to be used in frequency sensitive resonant gyroscopes

C. Ciminelli, C. E. Campanella, F. Dell’Olio, C. M. Campanella, M. N. Armenise

Abstract


In this paper we study a multi-ring resonant structure including three evanescently coupled ring resonators (named triple ring resonator,TRR), with different ring radii and coupling coefficients, and coupled to two bus waveguides. The potential application of a TRR as a rotationsensor is analyzed and its advantages over a single ring resonator (SRR) under rotation conditions are also highlighted. When the coupledrings have different size and their inter-ring coupling coefficients are lower than the ring-bus coupling coefficients, the resonance frequencydifference between two counter-propagating beams induced by rotation is enhanced with respect to that of a single ring resonator (SRR)with the same footprint. The scale factor of the rotating TRR, which depends on the structural parameters (i.e. inter-ring and ring-buscoupling coefficients, lengths of the rings, overall propagation loss within the rings), is up to 1.88 times the value of the scale factor of aSRR, which depends only on the ring radius, by assuming that the waveguide structure in both configurations is the same. This promisingnumerical achievement results in a reduction of the sensor footprint of about two times, with respect to a single ring with the same scalefactor. The results obtained may be useful to define new configurations of frequency sensitive optical gyros in low-loss technology, havinga small volume. In fact, by properly choosing the structural parameters, the spectral response of the TRR is forced to assume a shape moresensitive to the resonant frequency shift due to the rotation with respect to that one of a SRR.


© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13050]

Full Text: PDF

Citation Details


Cite this article

References


C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, ”Photonic technologies for angular velocity sensing,” Adv. Opt. Photon. 2, 370–404 (2010).

M. N. Armenise, C. Ciminelli, F. Dell’Olio, V. M. N. Passaro, Advances in Gyroscope Technologies (Springer-Verlag, 2010).

O. Kenji, ”Semiconductor ring laser gyro,” Japanese patent # JP 60,148,185, filed 1984, issued 1985.

M. Armenise, P. J. R. Laybourn, ”Design and Simulation of a Ring Laser for Miniaturised Gyroscopes,” Proc. SPIE 3464, 81–90 (1998).

M. N. Armenise, M. Armenise, V. M. N. Passaro, and F. De Leonardis, ”Integrated optical angular velocity sensor,” European patent # EP1219926, filed 2000, issued 2010.

M. Osi´nki, H. Cao, C. Liu, and P. G. Eliseev, ”Monolithically integrated twin ring diode lasers for rotation sensing applications,” J. Cryst. Growth 288, 144–147 (2006).

W. Lawrence, ”Thin film laser gyro,” US patent # 4,326,803, filed 1979, issued 1982.

K. Suzuki, K. Takiguchi, and K. Hotate, ”Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit,” J. Lightwave Technol. 18, 66–72 (2000).

C. Ciminelli, F. Peluso, and M. N. Armenise, ”A new integrated optical angular velocity sensor,” Proc. SPIE 5728, 93–100 (2005).

C. Ciminelli, C. E. Campanella, and M. N. Armenise, ”Optimized Design of Integrated Optical Angular Velocity Sensors Based on a Passive Ring Resonator,” J. Lightwave Technol. 27, 2658–2666 (2009).

H. Mao, H. Ma, and Z. Jin, ”Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique,” Opt. Express 19, 4632–4643 (2011).

C. Ciminelli, F. Dell’Olio, M. N. Armenise, F. M. Soares, and W. Passenberg, ”High performance InP ring resonator for new generation monolithically integrated optical gyroscopes,” Opt. Express 21, 556–564 (2013).

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, ”Numerical and experimental investigation of an optical high-Q spiral resonator gyroscope,” in Proceedings to the 14th International Conference on Transparent Optical Networks (ICTON), 1–4 (IEEE Photonics Society, Coventry, UK, 2012).

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, ”High-Q Spiral Resonator for Optical Gyroscope Applications: Numerical and Experimental Investigation,” IEEE Photonics J. 4, 1844–1854 (2012).

J. Schuer, and A. Yariv, ”Sagnac Effect in Coupled-Resonator Slow- Light Waveguide Structures,” Phys. Rev. Lett. 96, 05390 (2006).

M. Terrel, M. J. F. Digonnet, and S. Fan, ”Performance comparison of slow-light coupled-resonator optical gyroscopes,” Laser Photonics Rev. 3, 452–464 (2009).

B. Z. Steinberg, J. Scheuer, and A. Boag, ”Rotation Induced Super Structure in Slow-Light Waveguides with Mode Degeneracy,” J. Opt. Soc. Am. B 24, 1216–1224 (2007).

R. Novitski, B. Z. Steinberg, and J. Scheuer, ”Losses in rotating degenerate cavities and a coupled-resonator optical-waveguide rotation sensor,” Phys. Rev. A 85, 023813 (2012).

J. R. E. Toland, Z. A. Kaston, C. Sorrentino, and C. P. Search, ”Chirped area coupled resonator optical waveguide gyroscope,” Opt. Lett. 36, 1221–1223 (2011).

C. Sorrentino, J. R. E. Toland, and C. P. Search, ”Ultra-sensitive chip scale Sagnac gyroscope based on periodically modulated coupling of a coupled resonator optical waveguide,” Opt. Express 20, 354–363 (2012).

C. Ciminelli, C. E. Campanella, F. Dell’Olio, C. M. Campanella, and M. N. Armenise, ”Multiple ring resonators in optical gyroscope,” in Proceedings to the 14th International Conference on Transparent Optical Networks (ICTON), 1–4 (IEEE Photonics Society, Coventry, UK, 2012).

IEEE Standard for Inertial Sensor Terminology, IEEE Std 528-2001 (2001).

R. Adar, M. R. Serbin, and V. Mizrahi, ”Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12, 1369–1372 (1994).

S. Mandal, K. Dasgupta, T. K. Basak, and S. K. Ghosh, ”A generalized approach for modeling and analysis of ring-resonator performance as optical filter,” Opt. Commun. 264, 97–104 (2006).

S. Ezekiel, and H. J. Arditty, Fiber-Optic Rotation Sensors and Related Technologies (Springer, New York, 1982).

G. Barbarossa, M. N. Armenise, and A. M. Matteo, ”Triple-coupler ring-based optical guided-wave resonator,” Electron. Lett. 30, 131–133 (1994).

S. Olivier, C. Smith, M. Rattier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterlé, ”Miniband transmission in a photonic crystal coupled-resonator optical waveguide,” Opt. Lett. 26, 1019–1021 (2001).

M. Sumetsky, and B. Eggleton, ”Modeling and optimization of complex photonic resonant cavity circuits,” Opt. Express 11, 381–391 (2003).

R. Boeck, N. A. F. Jaeger, N. Rouger, and L. Chrostowski, ”Seriescoupled silicon racetrack resonators and the Vernier effect: theory and measurement,” Opt. Express 18, 25151–25157 (2010).