Journal of the European Optical Society - Rapid publications, Vol 10 (2015)

Improvement of performance and stability of polymer photovoltaic cells by WO3/CuPc as anode buffer layers

M. G. Varnamkhasti, E. Shahriari

Abstract


In this work, bulk-hetrojunction polymer photovoltaic cells based on poly-(3-hexylthiophene) (P3HT): [6,6]-phenyl C61 butyric acid methyl ester (PCBM) were fabricated with tungsten oxide (WO3) and copper phthalocyanine (CuPc) as anodic buffer layers. The WO3 plays an important role in reducing the interfacial resistance, efficiently extracting holes and good band structure matching between the work function of the anode and the highest occupied molecular orbital of the organic material. The insertion of CuPc improves the device In this work, bulk-hetrojunction polymer photovoltaic cells based on poly-(3-hexylthiophene) (P3HT): [6, 6]-phenyl C61 butyric acid methylester (PCBM) were fabricated with tungsten oxide (WO3) and copper phthalocyanine (CuPc) as anodic buffer layers. The WO3 plays animportant role in reducing the interfacial resistance, efficiently extracting holes and good band structure matching between the workfunction of the anode and the highest occupied molecular orbital of the organic material. The insertion of CuPc improves the deviceperformance and expands the absorption spectra range of the photovoltaic devices. The effects of WO3 and CuPc thickness on theperformance of the photovoltaic devices were investigated. The optimum thicknesses of WO3 and CuPc were 10 nm and 8 nm, respectively. The obtained power conversion efficiency of optimized cell was about 4.21%. Also, the device performance was analyzed based on thesurface roughness of bare ITO and ITO that was covered with poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT:PSS) or WO3/CuPc. The device stability in an ambient atmosphere without encapsulation under continuous light irradiation was also investigated.For the cell with PEDOT:PSS, the power conversion efficiency reduced down to 50% of the maximum value (half-life) after light irradiationfor 12 h, while the half-life of device for WO3/CuPc was about 120 h. Therefore, the lifetime of unpackaged devices was improved with WO3/CuPc.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2015.15028]

Full Text: PDF

Citation Details


Cite this article

References


M. Manceau, D. Angmo, M. Jorgensen, and F .C. Krebs, ”ITO-free flexible polymer solar cells: From small model devices to roll-toroll processed large modules,” Org. Electron. 12, 566–574 (2011).

J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, ”New architecture for high-efficiency polymer photovoltaic cells using solution based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006).

M. R. Lilliedal, A. J. Medford, M. V. Madsen, K. Norrman, and F. C. Krebs, ”The effect of post-processing treatments on inflection points in current–voltage curves of roll-to-roll processed polymer photovoltaics,” Solar. Energy. Mat. Sol. C. 94, 2018–2031 (2010).

J. E. Carle, J. W. Andreasen, M. Jorgensen, and F. C. Krebs, ”Low band gap polymers based on 1,4-dialkoxybenzene, thiophene, bithiophene donors and the benzothiadiazole acceptor,” Solar. Energy. Mat. Sol. C. 94, 774–780 (2010).

G. G. Zhao, Y. J. He, and Y. F. Li, ”6.5% Efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C60 bisadduct by device optimization,” Adv. Mater. 22, 4355–4358 (2010).

Y. Zhao, Z. Xie, C. Qin, Y. Qu, Y. Geng, and L. Wang, ”Enhanced charge collection in polymer photovoltaic cells by using an ethanol-soluble conjugated polyfluorene as cathode buffer layer,” Solar. Energy. Mat. Sol. C. 93, 604–608 (2009).

J. Weickert, H. Sun, C. Palumbiny, H. C. Hesse, and L. S. Mende, ”Spray-deposited PEDOT:PSS for inverted organic solar cells,” Sol. Energy. Mater. Sol. C. 94, 2371–2374 (2010).

K. J. Kim, Y. S. Kim, W. S. Kang, B. H. Kang, S. H. Yeom, D. E. Kim, J. H. Kim, et al., ”Inspection of substrate-heated modiïn ˇA˛ed PEDOT:PSS morphology for all spray deposited organic photovoltaics,” Solar. Energy. Mat. Sol. C. 94, (2010) 1303–1306.

K. Norrman, M. V. Madsen, S. A. Gevorgyan, and F. C. Krebs, ”Degradation patterns in water and oxygen of an inverted polymer solar cell,” J. Am. Chem. Soc. 132, 16883–16892 (2010).

K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D. D. C. Bradley, and J. R. Durrant, ”Degradation of organic solar cells due to air exposure,” Solar. Energy. Mat. Sol. C. 90, 3520–3530 (2006).

N. Koch, A. Vollmer, and A. Elschner, ”Influence of water on the work function of conducting poly(3,4- ethylenedioxythiophene)/poly(styrenesulfonate),” Appl. Phys. Lett. 90, 043512–043514 (2007).

S. W. Tong, C. F. Zhang, C. Y. Jiang, G. Liu, Q. D. Ling, E. T. Kang, D. S. H. Chan, et al., ”Improvement in the hole collection of polymer solar cells by utilizing gold nanoparticle buffer layer,” Chem. Phys. Lett. 453, 73–76 (2008).

M. Jorgensen, K. Norrman, and F. C. Krebs, ”Stability/degradation of polymer solar cells,” Solar. Energy. Mat. Sol. C. 92, 686–714 (2008).

J. Jung, D. Kim, W. S. Shin, S. J. Moon, C. Lee, and S. C. Yoon, ”Highly efficient organic photovoltaic cells with molybdenum oxide buffer layer,” Jpn. J. Appl. Phys. 49, 05EB05-1–05EB05-4 (2010).

M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, ”p-Type semiconducting nickel oxide as an efficiencyenhancing anode interfacial layer in polymer bulk-heterojunction solar cells,” Proc. Natl. Acad. Sci. 105, 2783–2787 (2008).

N. Espinosa, H. F. Dam, D. M. Tanenbaum, J. W. Andreasen, M. Jorgensen, and F. C. Krebs, ”Roll-to-roll processing of inverted polymer solar cells usin hydrated vanadium (V) oxide as a PEDOT:PSS replacement,” Materials 4, 169–182 (2011).

D. W. Zhao, S. T. Tan, L. Ke, P. Liu, A. K. K. Kyaw, X. W. Sun, G. Q. Lo, et al., ”Optimization of an inverted organic solar cell,” Solar. Energy. Mat. Sol. C. 94, 985–991 (2010).

S. W. Tong, C. F. Zhang, C. Y. Jiang, G. Liu, Q. D. Ling, E. T. Kang, D. S. H. Chan, et al., ”Improvement in the hole collection of polymer solar cells by utilizing gold nanoparticle buffer layer,” Chem. Phys. Lett. 453, 73–76 (2008).

W. Z. Cai, X. Gong, and Y. Cao, ”Polymer solar cells: recent development and possible routes for improvement in the performance,” Solar. Energy. Mat. Sol. C. 94, 114–127 (2010).

N. V. Tkachenko, V. Chukharev, P. Kaplas, A. Tolkki, A. Efimov, K. Haring, J. Viheriala, et al., ”Photoconductivity of thin organic films,” Appl. Surf. Sci. 256, 3900–3905 (2010).

A. Moliton, and J. M. Nunzi, ”How to model the behaviour of photovoltaic cells,” Polym. Int. 55, 583–600 (2006).

C. F. Zhang, S. W. Tong, C. Y. Jiang, E. T. Kang, D. S. H. Chan, and C. X. Zhu, ”Simple tandem organic photovoltaic cells for improved energy conversion efficiency,” Appl. Phys. Lett. 92, 083310- 1–083310-3 (2008).

F. Cheng, G. Fang, X. Fan, H. Huang, Q. Zheng, P. Qin, H. Lei, et al., ”Enhancing the performance of P3HT:ICBA based polymer solar cells using LiF as electron collecting buffer layer and UV–ozone treated MoO3 as hole collecting buffer layer,” Solar. Energy. Mat. Sol. C. 110, 63–68 (2013).

M. Ghasemi Varnamkhasti, H. R. Fallah, M. Mostajaboddavati, R. Ghasemi, and A. Hassanzadeh, ”Comparison of metal oxides as anode buffer layer for small molecule organic photovoltaic cells,” Solar. Energy. Mat. Sol. C. 98, 379–384 (2012).

A. Kuwabara, T. Nakayama, K. Uozumi, T. Yamaguchi, and K. Takahashi, ”Highly durable inverted-type organic solar cell using amorphous titanium oxide as electron collection electrode inserted between ITO and organic layer,” Solar. Energy. Mat. Sol. C. 92, 1476-1482 (2008).

S. H. B. Gholamkhass, and S. Holdcroft, ”Enhancing the durability of polymer solar cells using gold nano-dots,” Solar. Energy. Mat. Sol. C. 95, 3106–3113 (2011).

S. S. Ardestani, R. Ajeian, M. N. Badrabadi, and M. Tavakkoli, ”Improvement in stability of bilayer organic solar cells using an ultrathin Au layer,” Solar. Energy. Mat. Sol. C. 111, 107–111 (2013).