Journal of the European Optical Society - Rapid publications, Vol 10 (2015)

Coded access optical sensor (CAOS) imager

N. A. Riza, M. J. Amin, J. P. La Torre


High spatial resolution, low inter-pixel crosstalk, high signal-to-noise ratio (SNR), adequate application dependent speed, economical and energy efficient design are common goals sought after for optical image sensors. In optical microscopy, overcoming the diffraction limit in spatial resolution has been achieved using materials chemistry, optimal wavelengths, precision optics and nanomotion-mechanics for pixel-by-pixel scanning. Imagers based on pixelated imaging devices such as CCD/CMOS sensors avoid pixel-by-pixel scanning as all sensor pixels operate in parallel, but these imagers are fundamentally limited by inter-pixel crosstalk, in particular with interspersed bright and dim light zones. In this paper, we propose an agile pixel imager sensor design platform called Coded Access Optical Sensor (CAOS) that can greatly alleviate the mentioned fundamental limitations, empowering smart optical imaging for particular environments. Specifically, this novel CAOS imager engages an application dependent electronically programmable agile pixel platform using hybrid space-time-frequency coded multiple-access of the sampled optical irradiance map. We demonstrate the foundational working principles of the first experimental electronically programmable CAOS imager using hybrid time-frequency multiple access sampling of a known high contrast laser beam irradiance test map, with the CAOS instrument based on a Texas Instruments (TI) Digital Micromirror Device (DMD). This CAOS instrument provides imaging data that exhibits 77 dB electrical SNR and the measured laser beam image irradiance specifications closely match (i.e., within 0.75% error) the laser manufacturer provided beam image irradiance radius numbers. The proposed CAOS imager can be deployed in many scientific and non-scientific applications where pixel agility via electronic programmability can pull out desired features in an irradiance map subject to the CAOS imaging operation.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2015.15021]

Full Text: PDF

Citation Details

Cite this article


M. J. E. Golay, ”Multi-slit spectrometry,” J. Opt. Soc. Am. 39, 437–444 (1949).

S. J. Katzberg, F. O. Huck, and S. D. Wall, ”Photosensor aperture shaping to reduce aliasing in optical-mechanical line-scan imaging systems,” Appl. Optics 12, 1054–1060 (1973).

E. E. Fenimore, ”Coded aperture imaging: predicted performance of uniformly redundant arrays,” Appl. Optics 17, 3562–3570 (1978).

N. A. Riza, M. M. K. Howlader, and N. Madamopoulos, ”Photonic security system using spatial codes and remote coded coherent optical communications,” Opt. Eng. 35, 2487–2498 (1996).

P. M. Blanchard, and A. H. Greenaway, ”Simultaneous multiplane imaging with a distorted diffraction grating,” Appl. Optics 38, 6692–6699 (1999).

W. T. Cathey, and E. R. Dowski, ”New paradigm for imaging systems,” Appl. Optics 41, 6080–6092 (2002).

N. A. Riza, and M. Arain, ”Code multiplexed optical scanner,” Appl. Optics 42, 1493–1502 (2003).

B. Laude-Boulesteix, A. De Martino, B. Drévillon, and L. Schwartz, ”Mueller polarimetric imaging system with liquid crystals,” Appl. Optics 43, 2824–2832 (2004).

B. Javidi, S. Hong, and O. Matoba, ”Multidimensional optical sensor and imaging system,” Appl. Optics 45, 2986–2994 (2006).

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, ”STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3, 144–147 (2009).

N. Waltham, ”CCD and CMOS sensors,” in Observing photons in space, M. C. E. Huber, A. Pauluhn, J. L. Culhane, J. G. Timothy, K. Wilhelm, A. Zehnder, eds., 423–442 (Springer, New York, 2013).

A. Springer, and R. Weigel, ”RF microelectronics for W-CDMA mobile communication systems,” Electron. Commun. Eng. J. 14, 92–100 (2002).

J. Tsui, Digital techniques for wideband receivers (SciTech Publishing, Raleigh, 2004).

S. Sumriddetchkajorn, and N. A. Riza, ”Micro-electro-mechanical system-based digitally controlled optical beam profiler,” Appl. Optics 41, 3506–3510 (2002).

M. Sheikh, and N. A. Riza, ”Demonstration of pinhole laser beam profiling using a digital micromirror device,” IEEE Photonic. Tech. L. 21, 666–668 (2009).

N. A. Riza, S. A. Reza, and P. J. Marraccini, ”Digital micro-mirror device-based broadband optical image sensor for robust imaging applications,” Opt. Commun. 284, 103–111 (2011).

P. J. Marraccini, and N. A. Riza, ”Multimode laser beam analyzer instrument using electrically programmable optics,” Rev. Sci. Instrum. 82, 123107 (2011).

N. A. Riza, P. J. Marraccini, and C. Baxley, ”Data efficient digital micromirror device-based image edge detection sensor using space-time processing,” IEEE Sens. J. 12, 1043–1047 (2012).

J. P. La Torre, M. J. Amin, M. Magno, and N. A. Riza, ”An embedded smart agile pixel imager for lasers,” in Proceedings to the 6th IEEE European Embedded Design in Education and Research Conference (EDERC), 230–234 (IEEE, Milan, 2014).

M. J. Amin, J. P. La Torre and N. A. Riza, ”Embedded optics and electronics single digital micromirror device-based agile pixel broadband imager and spectrum analyser for laser beam hotspot detection,” Appl. Optics 54, 3547–3559 (2015).

N. A. Riza, Patent application pending.

W. C. Y. Lee, Mobile communication design fundamentals (John Wiley and Sons, New York, 1993).

Melles Griot (Red) He-Ne Laser Model 05-LHP-991 datasheet.

N. A. Riza, J. E. Hershey, and A. A. Hassan, ”A signaling system for multiple access laser communications and interference protection,” Appl. Optics 32, 1965–1972 (1993).

N. A. Riza, ”Universal optical code division multiple access (O-CDMA) encoders/decoders,” Proc. SPIE 6, 179–190 (2003).

N. Karafolas, and D. Uttamchandani, ”Optical fiber code division multiple access networks: a review,” Opt. Fiber Technol. 2, 149–168 (1996).

T. Richardson, and R. Urbanke, Modern coding theory (Cambridge University Press, Cambridge, 2008).

M. Johnson, Photodetection and measurement: maximizing performance in optical systems (McGraw-Hill, New York, 2003).

T. H. Wilmshurst, Signal recovery from noise in electronic instrumentation (Second edition, CRC Press, New York, 1990).

P. Gottlieb, ”A television scanning scheme for a detector-noiselimited system,” IEEE Trans. Infom. Theory 14, 428–433 (1968).

P. A. Santi, ”Light sheet fluorescence microscopy: a review,” J. Histochem. Cytochem. 59, 129–138 (2011).

J. Pawley (ed.), Handbook of biological confocal microscopy (Springer, New York, 2010).

N. A. Riza, and A. Bokhari, ”Agile optical confocal microscopy instrument architectures for high flexibility imaging,” Proc. SPIE 5324, 12.529073 (2004).

N. A. Riza, M. Sheikh, G. Webb-Wood, and P. G. Kik, ”Demonstration of three-dimensional optical imaging using a confocal microscope based on a liquid-crystal electronic lens,” Opt. Eng. 47, 063201 (2008).

N. A. Riza, ”Multiplexed optical scanner technology,” US Patent 6687036 (2004).

Z. Yaqoob, and N. A. Riza, ”High-speed scanning wavelengthmultiplexed fiber-optic sensors for biomedicine,” Proc. IEEE Sens. 1, 325–330 (2002).