Journal of the European Optical Society - Rapid publications, Vol 9 (2014)

Phase-sensitive near field Investigation of Bloch surface wave propagation in curved waveguides

X. Wu, E. Barakat, L. Yu, L. Sun, J. Wang, Q. Tan, H. P. Herzig


Bloch surface waves (BSWs) are electromagnetic surface waves excited in the band gap of a one dimensional dielectric photonic crystal. They are confined at the interface of two media. Due to the use of dielectric material, the losses are very low, which allows the propagation of BSWs over long distances. Another advantage is the possibility of operating within a broad range of wavelengths. In this paper, we study and demonstrate the propagation of light in ultra-thin curved polymer waveguides having different radii fabricated on a BSWs sustaining multilayer. A phase-sensitive multi-parameter near-field optical measurement system (MH-SNOM), which combines heterodyne interferometry and SNOM, is used for the experimental characterization. Propagating properties, bending loss, mode conversion and admixture are investigated. We experimentally show that when light goes through the curved part of the waveguide, energy can be converted into different modes. The superposition and interference of different modes lead to a periodically alternating bright and dark beat phenomenon along the propagation direction. Experimental optical phase and amplitude distributions in the curved waveguide show a very good agreement with simulation results.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2014.14049]

Full Text: PDF

Citation Details

Cite this article


P. Yeh, A. Yariv, and A. Y. Cho, ”Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).

C. Vandenbem, ”Electromagnetic surface waves of multilayer stacks: coupling between guided modes and Bloch modes,” Opt. Lett. 33, 2260–2262 (2008).

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, et al., ”Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010).

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, et al., ”Guided Bloch Surface Waves on Ultrathin Polymeric Ridges,” Nano Lett. 10, 2087–2091 (2010).

A. Angelini, E. Barakat, P. Munzert, L. Boarino, N. De Leo, E. Enrico, F. Giorgis, H. P. Herzig, et al., ”Focusing and Extraction of Light mediated by Bloch Surface Waves,” Sci. Rep. 4, (2014).

L. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. Peter Herzig, ”Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light Sci. Appl. 3, e124 (2014).

M. E. Marhic, ”Mode-coupling analysis of bending losses in IR metallic waveguides,” Appl. Optics 20, 3436–3441 (1981).

E. A. J. Marcatili, and S.E. Miller, ”Improved Relations Describing Directional Control in Electromagnetic Wave Guidance,” Bell Syst. Tech. J. 48, 2161–2188 (1969).

H. F. Taylor, ”Losses at corner bends in dielectric waveguides,” Appl. Optics 16, 711–716, (1977).

M. Heiblum and J. Harris, ”Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Elect. 11, 75–83 (1975).

Z. Zhu, C. E. Garcia-Ortiz, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, ”Compact and broadband directional coupling and demultiplexing in dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect,” Appl. Phys. Lett. 103, 061108-5 (2013).

L. Zhang, J. Yang, X. Fu, and M. Zhang, ”Graphene disk as an ultra compact ring resonator based on edge propagating plasmons,” Appl. Phys. Lett. 103, 163114-5 (2013).

K. Hassan, A. Bouhelier, T. Bernardin, G. Colas-des-Francs, J. C. Weeber, A. Dereux, and R. Espiau de Lamaestre, ”Momentumspace spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides,” Phys. Rev. B 87, 195428 (2013).

D. Courjon, and C. Bainier, ”Near field microscopy and near field optics,” Rep. Prog. Phys. 57, 989 (1994).

S. Kawata, Y. Inouye, and P. Verma, ”Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3, 388–394 (2009).

L. Novotny, ”The history of near-field optics,” in Progress in Optics, E. Wolf, ed., 137–184 (Elsevier, Amsterdam, 2007).

T. SFEZ, Investigation of Surface Electromagnetic Waves with Multi-Heterodyne Scanning Near-Field Optical Microscopy, (PhD Dissertation, École Polytechnique Fédérale de Lausanne, 2010).

P. Tortora, Optical Properties of Nano-Structured Materials Studied by Means of Interferometric Techniques (PhD Dissertation, Universiity of Neuchatel, 2005).

P. S. Carney, B. Deutsch, A. A. Govyadinov, and R. Hillenbrand, ”Phase in Nanooptics,” ACS Nano 6, 8–12 (2012).

T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, et al., ”Two-dimensional optics on silicon nitride multilayer: Refraction of Bloch surface waves,” Appl. Phys. Lett. 96, 151101–151103 (2010).

B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (Wiley, Hoboken, 2013).

S. Kawakami, ”Mode conversion losses of randomly bent, singly and doubly clad waveguides for single mode transmission,” Appl. Optics 15, 2778–2784 (1976).

E. G. Neumann, ”Curved dielectric optical waveguides with reduced transition losses,” Microwaves, Optics and Antennas, IEE Proceedings H 129, 278–280 (1982).

R. G. Hunsperger,Integrated Optics: Theory and Technology (Springer, Berlin, 2009).

D. Marcuse, ”Bending Losses of the Asymmetric Slab Waveguide,” Bell Syst. Tech. J. 50, 2551–2563 (1971).

R. W. Neumann, ”Sharp bends with low losses in dielectric optical waveguides,” Appl. Optics 22, 1016–1022 (1983).

A. Yariv, and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University Press, Oxford, 2007).

K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, and J. Ctyroky, ”Analytic approach to dielectric optical bent slab waveguides,” Opt. Quant. Electron. 37, 37–61 (2005).