Journal of the European Optical Society - Rapid publications, Vol 9 (2014)

Numerical calculation of temperature sensing in seawater based on microfibre resonator by intensity-variation scheme

H. J. Yang, J. Wang, S. S. Wang


A seawater temperature sensing and detection method based on microfibre resonator (MR) by intensity-variation scheme is proposed, which has the advantages of high sensitivity and low detection limit. The dependences of sensitivity on probing wavelength, fibre diametre and ring diametre are studied. Results show that probing wavelength influences the sensitivity by the absorption loss predominantly. Larger absorption loss results in lower sensitivity, which is much different with resonant-wavelength-shift scheme. And sensitivity increases with the increasing ring diametre due to the decreasing bending loss and increasing Q-factor. In addition, there may exist an optimal fibre diametre, with which the sensitivity is maximized. By tuning the parameters of system, sensitivity can be tuned from 0.0784NI/ºC to 13.79 NI/ºC (NI is the abbreviation of normalized intensity). Correspondingly, dynamic range changes from 11.77ºC to 0.08ºC. Additionally, the dependences of detection limit on wavelength, fibre diametre, and ring diametre are also investigated, which are opposite to that of sensitivity. For different temperatures, the dependences of sensitivity and detection limit at some typical temperatures are studied, which shows that high sensitivity and low detection limit are related to high temperature, and the optimal fibre diametres for high sensitivity and low detection limit are the same at different temperatures. The lowest detection limit is estimated to be 10^-7ºC level, which is four orders of magnitude smaller than that of the traditional method. Results shown here are beneficial to find the optimal parameters for the temperature sensors, and offer helpful references for assembling micro-photonics device used in seawater sensing and detection.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2014.14047]

Full Text: PDF

Citation Details

Cite this article


X. H. Fang, F. M. Boland, and G. R. Cresswell, ”Further observations of high-frequency current variations on the continental shelf near Sydney, New South Wales,” Aust. J. Mar. Fresh. Res. 35, 611–618 (1984).

R. Millard, J. Toole, and M. Swartz, ”A fast responding temperature measurement system for CTD applications,” Ocean Eng. 7, 413–427 (1980).

C. T. Swift, ”Passive microwave remote sensing of the ocean – A review,” Bound-Lay. Meteorol. 18, 25–54 (1980).

D. A. Pereira, O. Frazao, and J. L. Santos, ”Fibre Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43, 299–304 (2004).

F. Xu, P. Horak, and G. Brambilla, ”Optical microfiber coil resonator refractometric sensor,” Opt. Express 15, 7888–7893 (2007).

F. Xu, and G. Brambilla, ”Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92, 101126 (2008).

F. Xu, V. Pruneri, V. Finazzi, and G. Brambilla, ”An embedded optical nanowire loop resonator refractometric sensor,” Opt. Express 16, 1062–1067 (2008).

X. Guo, and L. M. Tong, ”Supported microfiber loops for optical sensing,” Opt. Express 16, 14429–14434 (2008).

J. Villatoro, M. P. Kreuzer, R. Jha, V. P. Minkovich, V. Finazzi, G. Badenes, and V. Pruneri, ” Photonic crystal fiber interferometer for chemical vapor detection with high sensitivity,” Opt. Express 17, 1447–1453 (2009).

G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, ”Thermally stabilized PCF-based sensor for temperature measurements up to 1000C,” Opt. Express 17, 21551–21559 (2009).

R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, ”Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34, 617–619 (2009).

J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, ”Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express 18, 14245–14250 (2010).

N. Lou, R. Jha, J. L Domínguez-Juárez, V. Finazzi, J. Villatoro, G. Badenes, and V. Pruneri, ”Embedded optical micro/nano-fiber for stable devices,” Opt. Lett. 35, 571–573 (2010).

G. A. Cárdenas-Sevilla, V. Finazzi, J. Villatoro, and V. Pruneri, ”Photonic crystal fiber sensor array based on modes overlapping,” Opt. Express 19, 7596–7602 (2011).

C. R. Liao, D. M. Wang, X. Y. He, and M. W. Yang, ”Twisted optical microfibers for refractive index sensing,” IEEE Photonic. Technol. Lett. 23, 848–850 (2011).

S. W. Harun, K. S. Lim, S. S. A. Damanhur, and H. Ahmad, ”Microfiber loop resonator based temperature sensor,” J. Europ. Opt. Soc. Rap. Public. 6, 11026 (2011).

K. S. Lim, I. Aryanfar, W. Y. Chong, Y. K. Cheong, S. W. Harun, and H. Ahmad, ”Integrated microfibre device for refractive index and temperature sensing,” Sensors 12, 11782–11789 (2012).

L. P. Sun, J. Li, Y. Z. Tan, X. Shen, X. D. Xie, S. Gao, and B. O. Guan, ”Miniature highly-birefringent microfiber loop with extremely-high refractive index sensitivity,” Opt. Express 20, 10180–10185 (2012).

J. H. Wo, G. H. Wang, Y. Cui, Q. Z. Sun, R. B. Liang, P. P. Shum, and D. M. Liu, ”Refractive index sensor using microfiber-based Mach-Zehnder interferometer,” Opt. Lett. 37, 67–69 (2012).

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, ”Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photonic. Technol. Lett. 24, 1872–1874 (2012).

S. S. Wang, J. Wang, G. Li, and L. Tong, ”Modeling optical microfiber loops for seawater sensing,” Appl. Opt. 51, 3017–3023 (2012).

G. Y. Chen, M. Ding, T. P. Newson, and G. Brambilla, ”A review of microfiber and nanofiber based optical sensors,” Open Optic. J. 7, 32–57 (2013).

L. Bo, P. F. Wang, Y. Semenova, and G. Farrell, ”High sensitivity fiber refractometer based on an optical microfiber coupler,” IEEE Photonic. Technol. Lett. 25, 228–230 (2013).

G. Y. Chen, G. Brambilla, and T. P. Newson, ”Inspection of electrical wires for insulation faults and current surges using sliding temperature sensor based on optical Microfibre coil resonator,” Electron. Lett. 49, 46–47 (2013).

M. Z. Muhammad, A. A. Jasim, H. Ahmad, H. Arof, and S. W. Harun, ”Non-adiabatic silica microfiber for strain and temperature sensors,” Sensor. Actuat. A-Phys. 192, 130–132 (2013).

Y. S. Chiam, K. S. Lim, S. W. Harun, S. N. Gan, and S. W. Phang, ”Conducting polymer coated optical microfiber sensor for alcohol detection,” Sensor. Actuat. A-Phys. 205, 58–62 (2014).

Y. Wu, B. C. Yao, Y. Cheng, Y. J. Rao, Y. Gong, W. L. Zhang, Z. G. Wang, et al., ”Hybrid graphene-microfiber waveguide for chemical gas sensing,” IEEE J. Sel. Top. Quant. 20, 4400206 (2014).

J. Y. Lou , Y. P. Wang, and L. M. Tong, ”Microfiber optical sensors: A review,” Sensors 14, 5823–5844 (2014).

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, ”The microfibre loop resonator: theory, experiment, and application,” J. Lightwave Technol. 24, 242–250 (2006).

X. Zeng, Y. Wu, C. L. Hou, J. Bai, and G. G.Yang, ”A temperature sensor based on optical microfibre knot resonator,” Opt. Commun. 282, 3817–3819 (2009).

Y. Wu, Y. J. Rao, Y. H. Chen, and Y. Gong, ”Miniature fiber-optic temperature sensors based on silica/polymer microfibre knot resonators,” Opt. Express 17, 18142–18147 (2009).

Y. Chen, Y. Ming, W. Guo, F. Xu, and Y. Q. Lu, ”Temperature characteristics of microfiber coil resonators embedded in teflon,” in Proceedings to the Communications and Photonics Conference and Exhibition, ACP. Asia, 1–6 (Shanghai Jiaotong University, Shanghai, 2011).

Y. Wu, L. Jia, T. H. Zhang, Y. J. Rao, and Y. Gong, ”Microscopic multi-point temperature sensing based on microfiber double-knot resonators,” Opt. Commun. 285, 2218–2222 (2012).

C. Y. Chao, and L. J. Guo, ”Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).

C. Y. Chao, W. Fung, and L. J. Guo, ”Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quant. 12, 134–142 (2006).

H. X. Yi, D. S. Citrin, and Z. P. Zhou, ”Highly sensitive athermal optical microring sensor based on intensity detection,” IEEE J. Quantum Elect. 47, 354–358 (2011).

C. Qiu, T. Hu, P. Yu, A. Shen, F. Wang, X. Q. Jiang, and J. Y. Yang, ”A temperature sensor based on silicon eye-like microring with sharp asymmetric fano resonance,” in Proceedings to the 2012 IEEE 9th International Conference on Group IV Photonics (GFP), 123–125 (IEEE, San Diego, 2012).

C. Y. Chao, and L. J. Guo, ”Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24, 1395–1402 (2006).

O. Schwelb, ”Transmission, group delay, and dispersion in singlering optical resonators and add/drop filters-a tutorial overview,” J. Lightwave Technol. 22, 1380–1394 (2004).

A. W. Snyder, and J. D. Love, Optical waveguide theory (Chapman and Hall, New York, 1991).

L. M. Tong, J. Y. Lou, and E. Mazur, ”Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).

X. H. Quan, and E. S. Fry, ”Empirical equation for the index of refraction of seawater,” Appl. Opt. 34, 3477–3480 (1995).