Journal of the European Optical Society - Rapid publications, Vol 9 (2014)

2 x 20 Gbps - 40 GHz OFDM Ro-FSO transmission with mode division multiplexing

A. Amphawan, S. Chaudhary, V. W. S. Chan


Radio-over-Free-Space-Optics (Ro-FSO) is a promising technology for future wireless networks. In this work, we have designed a hybrid orthogonal frequency division multiplexing (OFDM) Ro-FSO system for transmission of two independent channels by mode division multiplexing. Two independent 40 GHz radio signals are optically modulated at 20Gbps by mode division multiplexing of two laser modes LG00 and LG10 and transmitted over a free-space link of 20 km to 100 km. The performance of proposed Ro-FSO system is also evaluated under the effect of strong atmospheric turbulences.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2014.14041]

Full Text: PDF

Citation Details

Cite this article


Facts and Figures (International Telecommunication Union, 2013).

H. Al-Raweshidy, and S. Komaki, Radio over fiber technologies for mobile communications networks (Artech House, Norwood, 2002).

H. A. Willebrand, and S. G. Baksheesh, Free Space Optics: Enabling Optical Connectivity in Todays Networks (Sams Publishing, Indianapolis, 2002).

L. C. Andrews, L. P. Ronald, and H. Y. Cynthia, Laser beam scintillation with applications (Spie Press Belliongham, Washington, 2001).

H. H. Refai, J. S. Sluss Jr, and H. R. Hazem, ”The transmission of multiple RF signals in free-space optics using wavelength division multiplexing,” Proc. SPIE 5793, 1–8 (2005).

A. Bekkali, K. Kazaura, K. Wakamori, T. Suzuki, M. Matsumoto, T. Higashino, et al., ”Performance evaluation of an advanced DWDM RoFSO system for transmitting multiple RF signals,” IEICE T. Fund. Electr. 92, 2697–2705 (2009).

D. R. Kolev, K. Wakamori, and M. Matsumoto, ”Transmission Analysis of OFDM-Based Services Over Line-of-Sight Indoor Infrared Laser Wireless Links,” J. Lightwave Technol. 30, 3727–2735 (2012).

A. Amphawan, ”Binary encoded computer generated holograms for temporal phase shifting,” Opt. Express 19, 23085–23096 (2011).

A. Amphawan, ”Binary spatial amplitude modulation of continuous transverse modal electric field using a single lens for mode selectivity in multimode fiber,” J. Mod. Optic. 59, 460–469 (2012).

S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. bolle, R. J. Essiambre, et al., ”Space-division multiplexing over 10 km of three-mode fiber using coherent 6 6 MIMO processing,” in proceedings to Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2011 and the National Fiber Optic Engineers Conference, 1–3 (IEEE, Los Angeles, 2011).

A. Amphawan, and O. Dominic, ”Modal decomposition of output field for holographic mode field generation in a multimode fiber channel,” in proceedings to Photonics (ICP), 2010 International Conference (IEEE, Langkawi, 2010).

A. Amphawan, V. Mishrab, K. Nisaran, and B. Nedniyomc ”Realtime holographic backlighting positioning sensor for enhanced power coupling efficiency into selective launches in multimode fiber,” J. Mod. Optic. 59, 1745–1752 (2012).

A. Amphawan, N. Benjaporn, and M. A. S. Nashwan, ”Selective excitation of LP01 mode in multimode fiber using solid-core photonic crystal fiber,” J. Mod. Optic. ahead-of-print, 1–9 (2014).

Y. Jung, R. Chen, R. Ismaeel, G. Brambilla, S. U. Alam, I. P. Giles, and D. J. Richardson, ”Dual mode fused optical fiber couplers suitable for mode division multiplexed transmission,” Opt. Express 21, 24326–24331 (2013).

Y. Ren, H. Huang G. Xie, N. Ahmed, Y Yan, B. I. Erkmen, N. Chandrasekaran, et al., ”Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing,” Opt. Lett. 38, 4062–4065 (2013).

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, et al., ”Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, et al., ”100 Tbit/s free-space data link enabled by threedimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39, 197–200 (2014).

Y. Chen, F. Wang, C. Zhao, and Y. Cai, ”Experimental demonstration of a Laguerre-Gaussian correlated Schell-model vortex beam,” Opt. Express 22, 5826–5838 (2014).

I. M. Fazal, N. Ahmed, J. Wang, J. Y. Yang, Y. Yan, B. Shamee, H. Huang, et al. ”2 Tbit/s free-space data transmission on two orthogonal orbital-angular-momentum beams each carrying 25 WDM channels,” Opt. Lett. 37, 4753–4755 (2012).

T. Su, R. P. Scott, S. S. Djordjevic, N. K. Fontaine, D. J. Geisler, X. Cai, and S. J. B. Yoo, ”Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices,” Opt. Express 20, 9396–9402 (2012).

P. Polynkin, A. Peleg, L. Klein, T. Rhoadarmer, and J. Moloney, ”Optimized multiemitter beams for free-space optical communications through turbulent atmosphere,” Opt. Lett. 32 885–887 (2007).

J. Cang, P. Xiu, and X. Liu, ”Propagation of Laguerre-Gaussian and Bessel-Gaussian Schell-model beams through paraxial optical systems in turbulent atmosphere,” Opt. Laser Technol. 54, 35–41 (2013).

R. Chen, L. Liu, S. Zhu, G. Wu, F. Wang, and Y. Cai, ”Statistical properties of a Laguerre-Gaussian Schell-model beam in turbulent atmosphere,” Opt. Express 22, 1871–1883 (2014).

L. Pan, C. Ding, and H. Wang, ”Diffraction of cosine-Gaussiancorrelated Schell-model beams,” Opt. Express 22, 11670–11679 (2014).

A. Amphawan, and W. A. Alabdalleh, ”Simulation of properties of the transverse modal electric field of an infinite parabolic multimode fiber,” Microw. Opt. Techn. Let. 54, 1362–1365 (2012).

A. Amphawan, ”Holographic mode-selective launch for bandwidth enhancement in multimode fiber,” Opt. Express 19, 9056–9065 (2011) .

L. C. Andrews, and R. L. Phillips, Laser Beam Propagation Through Random Media (2nd edition, SPIE Press Book, Bellingham WA, 2005).

M. Born, and E. Wolf, Principles of Optics (6th ed., Pergamon Press Canada Ltd., Ontario, 1980).

J. W. Goodman, Statistical Optics (Wiley, New York, 1985).

J. Goodman, Introduction to Fourier Optics (3rd Edition, Roberts and Company Publishers, Greenwood Village CO, 2004).