Journal of the European Optical Society - Rapid publications, Vol 9 (2014)

Surface characterization by structure function analysis

T. Kreis, J. Burke, R. B. Bergmann


The structure function is a tool for characterizing technical surfaces which exhibits a number of advantages over Fourier-based analysis methods. So it is optimally suited for analyzing the height distributions of surfaces measured by full-field non-contacting methods. After the definition of line- and area-structure function and offering effective procedures for their calculation this tutorial paper presents examples using simulated and measured data of machined surfaces as well as optical components. Comparisons with the results of Fourier-based evaluations clearly prove the advantages of structure function analysis.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2014.14032]

Full Text: PDF

Citation Details

Cite this article


R. Bergmann, and Ph. Huke, ”Advanced Methods for Optical Nondestructive Testing” in W. Osten, and N. Reingand (eds.): Optical Imaging and Metrology (Wiley-VCH, Weinheim, 2012).

E. Savio, L. De Chiffre, and R. Schmitt, ”Metrology of freeform shaped parts,” CIRP Ann.-Manuf. Techn. 56(2), 810–835 (2007).

D. M. Shotton, ”Electronic light microscopy: present capabilities and future prospects,”Histochem. Cell Biol. 104, 97–137 (1995).

H. Schwenke, U. Neuschaefer-Rube, T. Pfeifer, and H. Kunzmann, ”Optical Methods for Dimensional Metrology in Production Engineering,” CIRP Ann.-Manuf. Techn. 51(2), 685–699 (2002).

T. Yoshizawa (Ed.), Handbook of Optical Metrology (CRC Press, Boca Raton, 2009).

J. Burke, T. Bothe, W. Osten, and C. Hess, ”Reverse Engineering by Fringe Projection,” Proc. SPIE 4778, 312–324 (2002).

X. Su, W. Chen, Q. Zhang, and Y. Chao, ”Dynamic 3-D shape measurement method based on FTP,” Opt. Laser Eng. 36(1), 49–64 (2001).

O. Kafri, and I. Glatt, The Physics of Moire Metrology (Wiley Series in Pure Applied Optics, New York, 1990).

J. Burke, W. Li, A. Heimsath, C. von Kopylow, and R. Bergmann, ”Qualifying parabolic mirrors with deflectometry,” J. Europ. Opt. Soc. Rap. Public. 8, 13014 (2013).

T. Bothe, W. Li, C. v. Kopylow, and R. Bergmann. ”The Fringe Reflection Technique for Lens Inspection and Specular Freeform Measurement,” MAFO Ophthalmic Labs & Industry 5, 38–42 (2009).

Th. Kreis, Handbook of Holographic Interferometry (Wiley-VCH, Weinheim, 2005).

Y. Hu, J. Xi, J. Chicharo, and Z. Yang, ”Improved Three-Step Phase Shifting Profilometry Using Digital Fringe Pattern Projection,” in Proceedings of International Conference on Computer Graphics, Imaging and Visualisation, 161–167 (IEEE, Sydney, 2006).

G. Sansoni, S. Corini, S. Lazzari, R. Rodella, and F. Docchio, ”Threedimensional imaging based on Gray-code light projection: characterization of the measuring algorithm and development of a measuring system for industrial applications,” Appl. Optics 36(19), 4463–4472 (1997).

J. Sijbers, T. Ceulemans, and D. van Dyck, ”Algorithm for the computation of 3D Fourier descriptors,” in Proceedings of International Conference on Pattern Recognition (ICPR’02), 20790 (IEEE Computer Society, Quebeck, 2002).

M.-F. Wu, and H.-T. Sheu, ”Representation of 3D surfaces by twovariable Fourier descriptors,” IEEE T. Pattern Anal. 20(8), 858–863 (1998).

L. Rosenboom, Th. Kreis, and W. Jüptner, ”Surface description and defect detection by wavelet analysis,” Meas. Sci. Technol. 22(4), 045102 (2011).

A. N. Kolmogorov, ”The local structure of turbulence in incompressible viscous fluids at very large Reynolds numbers (in Russian),” Dokl. Akad. Nauk. SSSR 30, 299–303 (1941).

A. N. Kolmogorov, ”Dissipation of energy in isotropic turbulence (in Russian),” Dokl. Acad. Nauk. SSSR 32, 19–21 (1941).

T. R. Thomas, B.-G. Rosen, and N. Amini, ”Fractal characterization of the anisotropy of rough surfaces”, Wear 232, 41–50 (1999).

L. He, A. Davies, and C. J. Evans, ”Comparison of the area structure function to alternate approaches for optical surface characterization,” Proc. SPIE 8493, (2012).

L. He, C. J. Evans, and A. Davies, ”Two-quadrant area structure function analysis for optical surface characterization,” Opt. Express 20(21), 23275–232801 (2012).

P. L. Vanyan, ”Structure function of the velocity field in turbulent flows,” JETP 82(3), 580–586 (1996).

J. Rutman, ”Characterization of Phase and Frequency Instabilities in Precision Frequency Sources: Fifteen Years of Progress”, Proc. IEEE 66(9), 1048–1075 (1978).

J. H. Simonetti, J. M. Cordes, and D. S. Heeschen, ”Flicker of extragalactic radio sources at two frequencies,” Astrophys. J. 296, 46–59 (1985).

B. Czerny, V. T. Doroshenko, M. Nikolajuk, A. Schwarzenberg- Czerny, Z. Loska, and G. Madejski, ”Variability of accretion flow in the core of the Seyfert galaxy NGC4151,” Mon. Not. R. Astron. Soc. 342, 1222–1240 (2003).

A. M. Hvisc, J. H. Burge, ”Structure function analysis of mirror fabrication and support errors,” Proc. SPIE. 66710A (2007).

O. K. Ersoy, Diffraction, Fourier Optics and Imaging (J. Wiley and Sons, New Jersey, 2007).