Journal of the European Optical Society - Rapid publications, Vol 9 (2014)

Nonlinear optical properties of Au-nanoparticles conjugated with lipoic acid in water

M. Trejo-Durán, D. Cornejo-Monroy, E. Alvarado-Méndez, A. Olivares-Vargas, V. M. Castano


Gold nanoparticles were chemically conjugated with lipoic acid to control their optical properties. Z-scan and other optical techniques were used to characterize the non-linear behavior of the resulting nanostructured materials. The results show that the nonlinearity is of thermal origin, which can be controlled by the use of lipoic acid as well as other organic molecules conjugated onto metal nanoparticles. In particular, the presence of lipoic acid increases n2 and dn/dT.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2014.14030]

Full Text: PDF

Citation Details

Cite this article


U. Kreibing, and M. Vollmer, Optical properties of metal clusters (Springer, Berlin, 1995).

P. Mulvaney, ”Surface Plasmon Spectroscopy of Nanosized Metal. Particles,” Langmuir 12, 788–800 (1996).

S.-Z. Tan, Y.-J. Hu, J.-W. Chen, G.-L. Shen, and R.-Q. Yu, ”An optical sensor based on covalent immobilization of 1-aminopyrene using Au nanoparticles as bridges and carriers,” Sensor. Actuat. B-Chem 124(1), 68–73 (2007).

D. Zheng, C. Hu, T. Gan, X. Dang, and S. Hu , ”Preparation and application of a novel vanillin sensor based on biosynthesis of Au–Ag alloy nanoparticles,” Sensor. Actuat. B-Chem 14(1), 247–252 (2010).

F. Lu, T. L. Doane, J.-J. Zhu, C. Burda, ”2Gold nanoparticles for diagnostic sensing and therapy,” Special Issue: Metals in Medicine, Inorganica Chimica Acta 393, 142–153 (2012).

W. B. Liechty, and N. A. Peppas, ”Expert opinion: Responsive polymer nanoparticles in cancer therapy,” Eur. J. Pharm. Biopharm. 80(2), 241–246 (2012).

P. K. Jain, I. H. El-Sayed, M. A. El-Sayed , ”Au nanoparticles target cancer,” Nano Today 2(1), 18–29 (2007).

M. E. Greene, ”Nanoparticles help paint resist germs: Nanotechnology,” Mater. Today 11(3), 16 (2008).

A. A. Dakhel, ”Preparation and optical study of Au nanograins in amorphous La-oxide medium,” Colloid. Surface. A 332, 9–12 (2009).

N. Shalkevich, W. Escher, T. Bürgi, B. Michel, L. Si-Ahmed, and Dimos Poulikakos, ”On the Thermal Conductivity of Gold Nanoparticle Colloids,” Langmuir 26(2), 663–670 (2010).

S. A. Putnam, D. G. Cahill, P. V. Braun, Z. Ge, and R. G. Shimmin, ”Thermal conductivity of nanoparticle suspensions,” J. Appl. Phys. 99, 084308 (2006).

H. E. Patel, S. K. Das, T. Sundararajan, A. Sreekumaran Nair, B. George, and T. Pradeep, ”Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects,” Appl. Phys. Lett. 83, 2931 (2003).

D. Lee, ”Thermophysical properties of interfacial layer in nanofluids,” Langmuir 23(11), 6011–6018 (2007).

S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke, ”Anomalous thermal conductivity enhancement in nanotube suspensions,” Appl. Phys. Lett. 79, 2252 (2001).

H. Yang, L. Zhang, and X. Fu, ”Spectral evolution of an optical pattern generated by spatial modulation instability in a reorientational Kerr nonlinear medium,” J. Mod. Optic. 59(2), (2012).

R. E. Noskov, P. A. Belov, and Y. S. Kivshar, ”Subwavelength Modulational Instability and Plasmon Oscillons in Nanoparticle Arrays,” Phys. Rev. Lett. 108, 093901 (2012).

B. Gu, F. Ye, K. Lou, Y. Li, J. Chen, and H.-T. Wang, ”Vectorial selfdiffraction effect in optically Kerr medium,” Opt. Express 20(1), 149 (2012).

B. V. Ana, and K. Saravanamuttu, ”Diversity and slow dynamics of diffraction rings:a comprehensive study of spatial self-phase modulation in a photopolymer,” J. Opt. Soc. Am. B 29(8), 2357– 2372 (2012).

W. J. Wan, S. Jia, ”Dispersive superfluid-like shock waves in nonlinear optics,” Nat. Phys. 3, 46 (2007).

N. Ghofraniha, C. Conti, G. Ruocco, and S. Trillo, ”Shocks in nonlocal media,” Phys. Rev. Lett. 99, 043903 (2007).

A. I. Yakimenko, Y. A. Zaliznyak, and Y. S. Kivshar, ”Stable vortex solitons in nonlocal self-focusing nonlinear media,” Phys. Rev. E 71, 065603(R) (2005).

B. Alfassi, C. Rotschild, and M. Segev, ”Incoherent surface solitons in effectively instantaneous nonlocal nonlinear media,” Phys. Rev. A 80, 041808 (2009).

S. Namiki, T. Kurosu, K. Tanizawa, S. Petit, G. Mingyi, and J. Kurumida, ”Controlling Optical Signals Through Parametric Processes,” IEEE J. Sel. Top. Quant. 18(2), 717–725 (2012).

X. Q. Wang, Q. Ren, F. J. Zhang, W. F. Guo, X. B. Sun, J. Sun, H. L. Yang, et al., ”Preparation, characterization, thermal and thirdorder nonlinear optical properties of bis(tetraethylammonium) bis(2-thioxo-1,3-dithiole-4,5-dithiolato)cuprate(II),” Mater. Res. Bull. 43(8), 2342–2353 (2008).

A. Y. Fasasi, M. Maaza, C. Theron, et al., ”Non-linear absorption and second harmonic imaging of Zn–BaTiO3 thin films prepared by laser ablation,” Thin Solid Films 516(18), 6233 (2008).

Y. H. Wang, J. D. Lu, R. W. Wang, S. J. Peng, Y. L. Mao, and Y. G. Cheng, ”Optical nonlinearities of Au nanocluster composite fabricated by 300 keV ion implantation,” Physica B. 403, 3399–3402 (2008).

Y. H. Wang, Y. M. Wang, J. D. Lu, L. L. Ji, R. G. Zhang, and R. W. Wang, ”Nonlinear optical properties of Cu nanoclusters by ion implantation in silicate glass,” Opt. Commun. 283, 486–489 (2010).

X.-X. Yu, and Y.-H. Wang, ”Measurement of nonlinear optical refraction of composite material based on sapphire with silver by Kerrlens autocorrelation method,” Opt. Express 22, 177–18 (2014).

S. Qu, C. Zhao, X. Jiang, G. Fang, Y. Gao, H. Zeng, Y. Song, et al., ”Optical nonlinearities of space selectively precipitated Au nanoparticles inside glasses,” Chem. Phys. Lett. 368, 352–358 (2003).

S. Qu, Y. Zhang, H. Li, J. Qiu, and C. Zhu, ”Nanosecond nonlinear absorption in Au and Ag nanoparticles precipitated glasses induced by femtosecond laser,” Opt. Mater. 28, 259–265 (2006).

P. Lesiak, and M. Wójcik, ”Nonlinear optical characterization of the gold nanoparticles coated by thiols,” Photonics Letters of Poland 3(3), 113–115 (2001).

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and Wei Ji, ”Observation of saturable and reverse-saturable absorption at longitudinal surface Plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88, 083107 (2006).

Y. Zhang, M. Ma, X. Wang, D. Fu, N. Gu, et al., ”Second-order optical nonlinearity of surface-capped CdS nanoparticles and effect of surface modification,” J. Phys. Chem. Solids 64, 927–931 (2003).

N. Ghofraniha, C.Conti, G. Ruocco, and S.Trillo, ”Shocks in Nonlocal Media,” Phys. Rev. Lett. 99, 043903 (2007).

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van- Stryland, ”Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quant. Electron 26, 760 (1990).

J. P Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, ”Long transient effects in laser with Inserted liquid samples”, J. Appl. Phys. 36(1), 3–8 (1965) .

C. A. Carter, and J. M. Harris, ”Comparasion of models describing the thermal lens effect,” Appl. Optics 23, 476–481 (1984).

E. W. Van Stryland, and M. Sheik-Bahae ”Z-Scan Measurements of Optical Nonlinearities,” in Characterization Techniques and Tabulations for Organic Nonlinear Materials M. G. Kuzyk, and C. W. Dirk, Eds., 655–692 (Marcel Dekker, Inc., New York City, 1998).

S. A. Akhmanov, D. P. Krindach, A. V. Migulin, A. P. Sukhroukov, and R. V. Khokhlov, ”Thermal self-actions of laser beams,” IEEE J. Quant. Electron. 4(10), 568–575 (1968).

C. A. Carter, and J. M. Harris, ”Comparison of models describing the thermal lens effect,” Appl. Optics 23, 476–481 (1984).

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, ”Synthesis of thiol-derivatised nanoparticles in two-phase liquidliquid system,” J. Chem. Soc., Chem. Commun. 7, 801–802 (1994).

W. Haiss, N. T. K. Thanh, J. Aveyard, and D. G. Fernig, ”Determination of size and concentration of gold nanoparticles from UV-Vis spectra,” Anal. Chem. 79, 4215–4221 (2007).

C. C. López-Mora, M. Trejo-Duran, E. Alvarado-Méndez, R. Rojas- Laguna, E. Vargas-Rodríguez, J. M. Estudillo-Ayala, R. Mata-Chavez, et al., ”PC-Based systems for experiments in optical characterization of materials,” J. Phys. Conf. Ser. 274, 12059 (2011).

H. Nadjari, F. Hajiesmaeilbaigi, and A. Motamedi, ”Thermo Optical Response and Optical Limiting in Ag and Au Nanocolloid Prepared by Laser Ablation,” Laser Phys. 20(4), 859–864 (2010).

M. Trejo-Duran, E. Alvarado-Mendez, E. Vargas-Rodriguez, J. M. Estudillo-Ayala, and R. I. Mata-Chavez, ”Nonlinear optical characterization of ionics liquids of 1-methylpyrrolidine family,” Proc. SPIE 8412, 84121X–1 (2012).