Journal of the European Optical Society - Rapid publications, Vol 9 (2014)

Cover Image

Recent advances in miniaturized optical gyroscopes

F. Dell'Olio, T. Tatoli, C. Ciminelli, M. N. Armenise


Low-cost chip-scale optoelectronic gyroscopes having a resolution ≤ 10 °/h and a good reliability also in harsh environments could have a strong impact on the medium/high performance gyro market, which is currently dominated by well-established bulk optical angular velocity sensors. The R&D activity aiming at the demonstration of those miniaturized sensors is crucial for aerospace/defense industry, and thus it is attracting an increasing research effort and notably funds.  
In this paper the recent technological advances on the compact optoelectronic gyroscopes with low weight and high energy saving are reviewed. Attention is paid to both the so-called gyroscope-on-a-chip, which is a novel sensor, at the infantile stage, whose optical components are monolithically integrated on a single indium phosphide chip, and to a new ultra-high Q ring resonator for gyro applications with a configuration including a 1D photonic crystal in the resonant path. The emerging field of the gyros based on passive ring cavities, which have already shown performance comparable with that of optical fiber gyros, is also discussed.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2014.14013]

Full Text: PDF

Citation Details

Cite this article


N. Barbour, and G. Schmidt, ”Inertial sensor technology trends,” IEEE Sens. J. 1, 332–339 (2001).

M. N. Armenise, C. Ciminelli, F. De Leonardis, R. Diana, V. Passaro, and F. Peluso, Gyroscope technologies for space applications (4th Round Table on Micro/Nano Technologies for Space, Noordwijk, 20–22 May 2003).

K. Liu, W. Zhang, W. Chen, K. Li, F. Dai, F. Cui, X. Wu, et al., ”The development of micro-gyroscope technology,” J. Micromech. Microeng. 19, 113001 (2009).

”Gyroscopes and IMUs for defense, Aerospace & Industrial,” Yole Development Report (2012), Gyroscopes-and-IMUs-for-Defense-Aerospace-Industrial.html

W. W. Chow, J. Gea-Banaloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, ”The ring laser gyro,” Rev. Mod. Phys. 57, 61–104 (1985).

F. Aronowitz, ”Fundamentals of the ring laser gyro,” in Optical gyros and their applications, D. Loukianov, R. Rodloff, H. Sorg, B. Stieler, eds., (Canada Communications Group, Quebec, 1999).

B. Culshaw, and I. P. Giles, ”Fibre optic gyroscopes,” J. Phys. E: Sci. Instrum. 16, 5–15 (1983).

H. C. Lefèvre, ”Fundamentals of the interferometric fiber-optic gyroscope,” Opt. Rev. 4, 20–27 (1997).

B. Culshaw, ”The optical fibre Sagnac interferometer: an overview of its principles and applications,” Meas. Sci. Technol. 17, R1–R16 (2006).

E. J. Post, ”Sagnac effect,” Rev. Mod. Phys. 39, 475–493 (1967).

P. Pai, F. K. Chowdhury, C. H. Mastrangelo, and M. Tabib-Azar, ”MEMS-based hemispherical resonator gyroscopes,” in Proceedings to the IEEE Sensors Conference, 1–4 (IEEE, Taipei, 2012).

M. A. Gleyzes, L. Perret, and P. Kubik, Pleiades architecture and main performances (XXII Congress of the International Society for Photogrammetry and Remote Sensing, Melbourne, 25 August– 1 September 2012).

ADM-Aeolus (Atmospheric Dynamics Mission) https://directory.

D. Zorita, A. Agenjo, S. Llorente, G. Chlewicki, A. Cocito, P. Rideau, S. Thuerey, et al., How Planck AOCS behaved, commissioning early orbit and pointing manoeuvres (8th International ESA Conference on Guidance, Navigation & Control Systems, Karlovy Vary, 2011).

Alphasat I/Inmarsat-XL (Inmarsat-Extended L-band Payload) alphasat

M. F. Zaman, A. Sharma, Z. Hao, F. Ayazi, ”A mode-matched silicon-yaw tuning-fork gyroscope with subdegree-per-hour allan deviation bias instability,” IEEE J. Microelectromech. Syst. 17, 1526–1536 (2008).

E. A. Donley, ”Nuclear magnetic resonance gyroscopes,” in Proceedings to the IEEE Sensors Conference, 17–22 (IEEE, Kona, 2010).

M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. M. N. Passaro, Advances in gyroscope technologies (Springer-Verlag, Heidelberg, 2010).

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, ”Photonic technologies for angular velocity sensing,” Adv. Opt. Photon. 2, 370–404 (2010).

O. Kenji, ”Semiconductor ring laser gyro,” Japanese Patent # JP 60,148,185 (1985).

C. Ji, M. H. Leary, and J. M. Ballantyne, ”Long wavelength triangular ring laser,” IEEE Photonic. Tech. Lett. 9, 1469–1471 (1997).

R. van Roijen, E. C. M. Pennings, M. J. N. van Stalen, T. van Dongen, B. H. Verbeek, and J. M. M. van der Heijden, ”Compact InP-based ring lasers employing multimode interference couplers and combiners,” Appl. Phys. Lett. 64, 1753–1755 (1994).

T. Krauss, R. M. De La Rue, and P. J. R. Laybourn, ”Impact of output coupler configuration on operating characteristics of semiconductor ring lasers,” J. Lightwave Technol. 13, 1500–1507 (1995).

M. Sorel, P. J. R. Laybourn, A. Scirè, S. Balle, G. Guiliani, R. Miglierina, and S. Donati, ”Alternate oscillations in semiconductor ring lasers,” Opt. Lett. 27, 1992–1994 (2002).

H. Cao, H. Ling, C. Liu, H. Deng, M. Benavidez, V. A. Smagley, R. B. Caldwell, et al. ”Large S-section-ring-cavity diode lasers: directional switching, electrical diagnostics, and mode beating spectra,” IEEE Photonic. Tech. Lett. 17, 282–284 (2005).

J. P. Hohimer, and G. A. Vawter, ”Unidirectional semiconductor ring lasers with racetrack cavities,” Appl. Phys. Lett. 63, 2457–2459 (1993).

M. N. Armenise, C. Ciminelli, F. De Leonardis, and V. M. N. Passaro, ”Quantum effects in new integrated optical angular velocity sensors,” in Proceedings to the 5th International Conference on Space Optics, 595–597 (ESA, Noordwijk, 2004).

G. L. Vossler, M. D. Olinger, and J. L. Page, ”Solid medium optical ring laser,” United States Patent US005408492A (1995).

M. Armenise, Study and design of an integrated optical sensor for miniaturized gyroscopes for space applications (Master’s degree thesis, Bari Polytechnic, 1997).

M. Armenise, and P. J. R. Laybourn, ”Design and Simulation of a Ring Laser for Miniaturised Gyroscopes,” Proc. SPIE 3464, 81–90 (1998).

P. J. R. Laybourn, Integrated optoelectronics application in space (ESA International Workshop on Innovation for Competitiveness, Annex I, Noordwijk, 19–21 March 1997).

S. Donati, G. Giuliani, and M. Sorel, ”Proposal of a new approach to the electrooptical gyroscope: the GaAlAs integrated ring laser,” Alta Freq. 9, 61–63 (1997).

M. Sorel, P. J. Laybourn, G. Giuliani, and S. Donati, ”Progress on the GaAlAs ring laser gyroscope,” Alta Frequenza - Rivista Di Elettronica 10, 45–48 (1998).

P. J. R. Laybourn, M. Sorel, G. Giuliani, and S. Donati, ”Integrated semiconductor laser rotation sensors,” Proc. SPIE 3620, 322–331 (1999).

K. Taguchi, K. Fukushima, A. Ishitani, and M. Ikeda, ”Proposal of a semiconductor ring laser gyroscope,” Opt. Quant. Electron. 31, 1219–1226 (1999).

T. Numai, ”Analysis of signal voltage in a semiconductor ring laser gyro,” IEEE J. Quantum Elect. 36, 1161–1167 (2000).

M. N. Armenise, M. Armenise, V. M. N. Passaro, F. De Leonardis, ”Integrated optical angular velocity sensor,” European Patent EP1219926B1 (2000).

M. Osi´nski, H. Cao, C. Liu, and P. G. Eliseev, ”Monolithically integrated twin ring diode lasers for rotation sensing applications,” J. Cryst. Growth 288, 144–147 (2006).

J. Scheuer, ”Direct rotation-induced intensity modulation in circular Bragg micro-lasers,” Opt. Express 15, 15053–15059 (2007).

S. Ezekiel, and S. R. Balsamo, ”Passive ring resonator laser gyroscope,” Appl. Phys. Lett. 30, 478–480 (1977).

R. Adar, M. R. Serbin, and V. Mizrahi, ”Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12, 1369–1372 (1994).

M. C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, and J. E. Bowers, ”Ultra-high quality factor planar Si3N4 ring resonators on Si substrates,” Opt. Express 19, 13551–13556 (2011).

D. T. Spencer, Y. Tang, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, ”Integrated Si3N4/SiO2 ultra high Q ring resonators,’ in Proceedings to the IEEE Photonics Conference (ICP), 141–142, (IEEE, Burlingame, 2012).

C. Vannahme, H. Suche, S. Reza, R. Ricken, V. Quiring, and W. Sohler, ”Integrated optical Ti:LiNbO3 ring resonator for rotation rate sensing”, in Proceedings to the 13th European Conference on Integrated Optics, WE1 (IEEE, Copenhagen, 2007).

J. T. A. Carriere, J. A. Frantz, S. Honkanen, R. K. Kostuk, B. R. Youmas, and E. A. J. Vikjaer, ”An integrated optic gyroscope using ion-exchanged waveguides,” in Proceedings to the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 99–100 (IEEE, Tucson, 2003).

G. Li and K. A. Winick, ”Integrated optical ring resonators fabricated by silver ion-exchange in glass”, in Proceedings to the IEEE/OSA Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, CWA63 (Optical Society of America, San Francisco, 2004).

W. Bogaerts, P. de Heyn, T. Van Vaerenbergh, K. de Vos, S. K. Selvaraja, T. Claes, P. Dumon, et al., ”Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2013).

J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, ”Polymer microring coupled-resonator optical waveguides,” J. Lightwave Technol. 24, 1843–1849 (2006).

F. Dell’Olio, C. Ciminelli, M. N. Armenise, F. M. Soares, and W. Rehbein, ”Design, fabrication, and preliminary test results of a new InGaAsP/InP high-Q ring resonator for gyro applications,” in Proceedings to the IEEE International Conference on Indium Phosphide and Related Materials, 124–127 (IEEE, Santa Barbara, 2012).

C. Ciminelli, F. Dell’Olio, M. N. Armenise, F. M. Soares, and W. Passenberg, ”High performance InP ring resonator for new generation monolithically integrated optical gyroscopes,” Opt. Express 21, 556–564 (2013).

C. Ciminelli, F. Peluso, and M. N. Armenise, ”A new integrated optical angular velocity sensor,” Proc. SPIE 5728, 10.1117/12.590421 (2005).

H. K. Hsiao, and K. A. Winick, ”Planar glass waveguide ring resonators with gain,” Opt. Express 15, 17783–17797 (2007).

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, ”Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).

X. Zhang, and A. M. Armani, ”Silica microtoroid resonator sensor with monolithically integrated waveguides,” Opt. Express 21, 23592–23603 (2013).

C. Ford, R. Ramberg, K. Johnson, W. Berglund, B. Ellerbusch, R. Schermer, and A. Gopinath, ”Cavity element for resonant micro optical gyroscope,” IEEE Aero. El. Sys. Mag. 15, 33–36 (2000).

X. L. Zhang, and K. J. Zhou, ”Open-loop experiments of resonator micro-optic gyro,” Optoelectron. Lett. 5, 97–100 (2009).

H. Yu, C. Zhang, L. Feng, Z. Zhou, L. Hong, ”SiO2 waveguide resonator used in an integrated optical gyroscope,” Chinese Phys. Lett. 26, 054210 (2009).

L. Guo, B. Shi, C. Chen, and M. Zhao, ”A large-size SiO2 waveguide resonator used in integration optical gyroscope,” Optik 123, 302–305 (2012).

M. Zhao, B. R. Shi, C. Chen, L. J. Guo, R. Zhang, Q. Zhang, ”Experimental study on resonator micro optic gyroscope,” Proc. SPIE 8191, 10.1117/12.900776 (2011).

K. Iwatsuki, M. Saruwatari, M. Kawachi, and H. Yamazaki, ”Waveguide-type optical passive ring-resonator gyro using timedivision detection scheme,” Electron. Lett. 25, 688–689 (1989).

H. Ma, Y. Yan, Y. Chen, and Z. Jin, ”Improving long-term stability of a resonant micro-optic gyro by reducing polarization fluctuation,” IEEE Photon. J. 4, 2372–2381 (2012).

H. Ma, Z. He, and K. Hotate, ”Reduction of backscattering induced noise by carrier suppression in waveguide-type optical ring resonator gyro,” J. Lightwave Technol. 29, 85–90 (2011).

K. Suzuki, K. Takiguchi, and K. Hotate, ”Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit,” J. Lightwave Technol. 18, 66–72 (2000).

K. Hotate, K. Takiguchi, A. Hirose, ”Adjustment-free method to eliminate the noise induced by the backscattering in an optical passive ring-resonator gyro,” IEEE Photonic. Tech. Lett. 2, 75–77 (1990).

H. Mao, H. Ma, and Z. Jin, ”Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique,” Opt. Express 19, 4632–4643 (2011).

L. Feng, M. Lei, H. Liu, Y. Zhi, and J. Wang, ”Suppression of backreflection noise in a resonator integrated optic gyro by hybrid phase-modulation technology,” Appl. Optics 52, 1668–1675 (2013).

H. Ma, S. Wang, and Z. Jin, ”Silica waveguide ring resonators with multi-turn structure,” Opt. Commun. 281, 2509–2512 (2008).

C. Ciminelli, F. Dell’Olio, M. N. Armenise, ”High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photon. J. 4, 1844–1854 (2012).

H. Y. Yu, C. X. Zhang, L. S. Feng, L. F. Hong, and J. J. Wang, ”Optical noise analysis in dual-resonator structural micro-optic gyro,” Chinese Phys. Lett. 28, 084203 (2011).

C. Ciminelli, C. E. Campanella, M. N. Armenise, ”Optical rotation sensor as well as method of manufacturing an optical rotation sensor,” European Patent EP056933 (2013).

H. Ma, W. Wang, Y. Ren, and Z. Jin, ”Low-noise low-delay digital signal processor for resonant micro optic gyro,” IEEE Photonic. Tech. Lett. 25, 198–201 (2013).

M. Lei, L. Feng, and Y. Zhi, ”Sensitivity improvement of resonator integrated optic gyroscope by double-electrode phase modulation,” Appl. Optics 52, 7214–7219 (2013).

C. Ciminelli, V. M. N. Passaro, F. Dell’Olio, and M. N. Armenise, ”Quality factor and finesse optimization in buried InGaAsP/InP ring resonators,” J. Europ. Opt. Soc. Rap. Public. 4, 09032 (2009).

H. Ma, X. Chang, H. Mao, and Z. Jin, ”Laser frequency noise limited sensitivity in a resonator optic gyroscope,” in Proceedings to the 15th OptoElectronics and Communications Conference, 706– 707 (IEEE, Sapporo, 2010).

Z. Jin, G. Zhang, H. Mao, and H. Ma, ”Resonator micro optic gyro with double phase modulation technique using an FPGA-based digital processor,” Opt. Commun. 285, 645–649 (2012).

C. Peng, Z. Li, and A. Xu, ”Optical gyroscope based on a coupled resonator with the all-optical analogous property of electromagnetically induced transparency,” Opt. Express 15, 3864–3875 (2007).

C. Peng, Z. Li, and A. Xu, ”Rotation sensing based on a slow light resonating structure with high group dispersion,” Appl. Optics 46, 4125–4131 (2007).

J. Scheuer, and A. Yariv, ”Sagnac effect in coupled-resonator slowlight waveguide structures,” Phys. Rev. Lett. 96, 053901 (2006).

Y. Zhang, H. Tian, X. Zhang, N. Wang, J. Zhang, H. Wu, and P. Yuan, ”Experimental evidence of enhanced rotation sensing in a slowlight structure,” Opt. Lett. 35, 691–693 (2010).

Y. Zhang, N. Wang, H. Tian, H. Wang, W. Qiu, J. Wang, P. Yuan, ”A high sensitivity optical gyroscope based on slow light in coupled-resonator-induced transparency,” Phys. Lett. A 372, 5848–5852 (2008).

M. A. Terrel, M. J. F. Digonnet, and S. Fan ”Performance limitations of a coupled resonant optical waveguide gyroscope,” J. Lightwave Technol. 27, 47–54 (2009).

J. R. E. Toland, Z. A. Kaston, C. Sorrentino, and C. P. Search, ”Chirped area coupled resonator optical waveguide gyroscope,” Opt. Lett. 36, 1221–1223 (2011).

C. Sorrentino, J. R. E. Toland, and C. P. Search, ”Ultra-sensitive chip scale Sagnac gyroscope based on periodically modulated coupling of a coupled resonator optical waveguide,” Opt. Express 20, 354– 363 (2011).

C. Ciminelli, C. E. Campanella, F. Dell’Olio, C. M. Campanella, and M. N. Armenise, ”Theoretical investigation on the scale factor of a triple ring cavity to be used in frequency sensitive resonant gyroscopes,” J. Europ. Opt. Soc. Rap. Public 8, 13050 (2013).