Journal of the European Optical Society - Rapid publications, Vol 9 (2014)

Effect of surface roughness on optical heating of metals

M. Auinger, P. Ebbinghaus, A. Blümich, A. Erbe

Abstract


Heating by absorption of light is a commonly used technique to ensure a fast temperature increase of metallic samples. The rate of heating when using optical heating depends critically on the absorption of light by a sample. Here, the reflection and scattering of light from UV to IR by surfaces with different roughness of iron-based alloy samples (Fe, 1 wt-% Cr) is investigated. A combination of ellipsometric and optical scattering measurements is used to derive a simplified parametrisation which can be used to obtain the absorption of light from random rough metal surfaces, as prepared through conventional grinding and polishing techniques. By modelling the ellipsometric data of the flattest sample, the pseudodielectric function of the base material is derived. Describing an increased roughness by a Maxwell-Garnett model does not yield a reflectivity which follows the experimentally observed sum of scattered and reflected intensities. Therefore, a simple approach is introduced, based on multiple reflections, where the number of reflections depends on the surface roughness. This approach describes the data well, and is subsequently used to estimate the fraction of absorbed energy. Using numerical modelling, the effect on the heating rate is investigated. A numerical example is analysed, which shows that slight changes in roughness may result in big differences of the energy input into a metallic sample, with consequences on the achieved temperatures. Though the model oversimplifies reality, it provides a physically intuitive approach to estimate trends.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2014.14004]

Full Text: PDF

Citation Details


Cite this article

References


W. J. Quadakkers, J. Z˙ urek, and M. Hänsel, ”Effect of Water Vapor on High-temperature Oxidation of FeCr Alloys,” JOM 61, 44–50 (2009).

H. Yin, S. L. I. Chan, W. Y. D. Yuen, and D. J. Young, ”Temperature Effects on the Oxidation of Low Carbon Steel in N2-H2-H2O at 800 − 1200XC,” Oxid. Met. 77, 305–323 (2012).

J. Kalivodova, D. Baxter, M. Schütze, and V. Rohr, ”Gaseous corrosion of alloys and novel coatings in simulated environments for coal, waste and biomass boilers,” Mater. Corros. 56, 882–889 (2005).

J. Warris, M. Suleman, F. Mahmood, and H. Ahmed, ”Kinetics of the formation of cobalt disilicide at high temperature under rapid electron beam heating,” J. Mater. Sci. Lett. 13, 96–98 (1994).

D. Leong, M. Harry, K. J. Reeson, and K. P. Homewood, ”A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5µm,” Nature 387, 686–688 (1997).

S. R. Levine, E. J. Opila, M. C. Halbig, J. D. Kiser, M. Singh, and J. A. Salem, ”Evaluation of ultra-high temperature ceramics for aeropropulsion use,” J. Eur. Ceram. Soc. 22, 2757–2767 (2002).

C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (1st edition, Wiley-VCH, Weinheim, 2008).

A. Roos, M. Bergkvist, and C. G. Ribbing, ”Optical Scattering from Oxidized Metals. 1: Model Formulation and Properties,” Appl. Optics 28, 1360–1364 (1989).

A. Roos, M. Bergkvist, and C. G. Ribbing, ”Optical Scattering from Oxidized Metals. 1: Model Formulation and Properties; Errata,” Appl. Optics 28, 3795_1 (1989).

M. Bergkvist, A. Roos, C. G. Ribbing, J. M. Bennett, and L. Mattson, ”Optical Scattering from Oxidized Metals. 2: Model Verification for Oxidized Copper,” Appl. Optics 28, 3902–3907 (1989).

T. A. Germer, ”Measurement of Roughness of Two Interfaces of a Dielectric Film by Scattering Ellipsometry,” Phys. Rev. Lett. 85, 349–352 (2000).

M. Karamemehdovi´c, P. E. Hansen, and T. Wriedt, ”An efficient rough-interface scattering model for embedded nano-structures,” Thin Solid Films 541, 51–56 (2013).

M. Auinger, D. Vogel, A. Vogel, M. Spiegel, and M. Rohwerder, ”A novel laboratory set-up for investigating surface and interface reactions during short term annealing cycles at high temperatures,” Rev. Sci. Instr. 84, 085108 (2013).

L. Niewolak, M. Malessa, S. Y. Coleman, W. J. Quadakkers, and M. Schütze, ”Influence of cycling parameter variation on thermal cyclic oxidation testing of high temperature materials (COTEST),” Mater. Corros. 57, 31–42 (2006).

Light Scattering and Nanoscale Surface Roughness, A. A. Maradudin eds., (1st edition, Springer, New York, 2007).

S. Schröder, A. Duparré, L. Coriand, A. Tünnermann, D. H. Penalver, and J. E. Harvey, ”Modeling of light scattering in different regimes of surface roughness,” Opt. Express 19, 9820–9835 (2011).

T. A. Germer, ”Polarized light scattering by microroughness and small defects in dielectric layers,” J. Opt. Soc. Am. A 18, 1279–1288 (2001).

G. Vasan, Y. Chen, and A. Erbe, ”Computation of Surface-Enhanced Infrared Absorption Spectra of Particles at a Surface through the Finite Element Method,” J. Phys. Chem. C 115, 3025–3033 (2011).

G. Vasan, and A. Erbe, ”Incidence angle dependence of the enhancement factor in attenuated total reflection surface enhanced infrared absorption spectroscopy studied by numerical solution of the vectorial Maxwell equations,” Phys. Chem. Chem. Phys. 14, 14702–14709 (2012).

A. G. Skirtach, D. G. Kurth, and H. Möhwald, ”Laser-embossing nanoparticles into a polymeric film,” Appl. Phys. Lett. 94, 093106 (2009).

J. H. Kim, S. H. Ehrman, G. W. Mulholland, and T. A. Germer, ”Polarized light scattering by dielectric and metallic spheres on oxidized silicon surfaces,” Appl. Optics 43, 585–591 (2004).

S.-H. Hsu, Y.-C. Chang, Y.-C. Chen, P.-K. Wei, and Y. D. Kim, ”Optical metrology of randomly-distributed Au colloids on a multilayer film,” Opt. Express 18, 1310–1315 (2010).

B. C. Bergner, T. A. Germer, and T. J. Suleski, ”Effective medium approximations for modeling optical reflectance from gratings with rough edges,” J. Opt. Soc. Am. A 27, 1083–1090 (2010).

E. Marx, T. R. Lettieri, and T. V. Vorburger, ”Light scattering by sinusoidal surfaces: illumination windows and harmonics in standards,” Appl. Optics 34, 1269–1277 (1995).

P. G. Appleyard, ”Modelled infrared extinction and attenuation performance of atmospherically disseminated high aspect ratio metal nanoparticles,” J. Opt. A: Pure Appl. Opt. 9, 278–300 (2007).

M. Sun, Y. Fang, Z. Yang, and H. Xu, ”Chemical and electromagnetic mechanisms of tip-enhanced Raman scattering,” Phys. Chem. Chem. Phys. 11, 9412–9419 (2009).

G. Petzow, V. Carle, and U. Harnisch, Metallographic etching (2nd edition, Materials Park: ASM International, Ohio, 1999).

T. C. Choy, Effective Medium Theory - Principles and Applications (Clarendon Press, Oxford, 1999).

M. Born, and E. Wolf, Principles of Optics (7th edition, Cambridge University Press, Cambridge, 2002).

G. R. Fowles, Introduction to Modern Optics (2nd edition, Dover Publications, New York, 1989).

E. Hecht, Optics (4th edition, Addison Wesley, San Francisco, 2002).

B. J. Griffiths, R. H. Middleton, and B. A. Wilkie, ”Light scattering for the measurement of surface finish: a review,” Int. J. Prod. Res. 32, 2683–2694 (1994).

D. E. Aspnes, J. B. Theeten, and F. Hottier, ”Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 3292–3302 (1979).

T. A. Germer, and C. C. Asmail, ”Polarization of light scattered by microrough surfaces and subsurface defects,” J. Opt. Soc. Am. A 16, 1326–1332 (1999).

J. C. Stover, Optical Scattering: Measurement and Analysis (2nd edition, SPIE Press, Bellingham, 1995).

R. J. Dick, K. J. Heater, V. D. McGinniss, W. F. McDonald, and R. E. Russel, ”Comparison of the Effectiveness of Electric IR and Other Energy Sources To Cure Powder Coatings,” J. Coating. Technol. 66, 23–38 (1994).

S. Mokkapati, and C. Jagadish, ”III-V compound SC for optoelectronic devices,” Mater. Today 12, 22–32 (2009).

J. R. Howell, R. Siegel, and M. P. Menguc, Thermal Radiation Heat Transfer (5th edition, CRC Press, Boca Raton, 2010).

M. Lax, ”Temperature rise induced by a laser beam,” J. Appl. Phys. 48, 3919–3924 (1977).

J. P. Traverse, P. Fort, H. Ganda, and R. Saporte, ”Investigation of optical properties of iron, chromium, and nickel oxide based coatings,” Sol. Energ. Mat. Sol. C. 28, 195–207 (1992).

D. W. Jordan, and P. Smith, Nonlinear Ordinary Differential Equations - An Introduction for Scientists and Engineers (4th edition, Oxford University Press, Oxford, 2007).

D. R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2010).

L. del Campo, R. B. Pérez- Saéz, X. Esquisabel, I. Fernández, and M. J. Tello, ”New experimental device for infrared spectral directional emissivity measurements in a controlled environment,” Rev. Sci. Instrum. 77, 113111 (2006).

S. G. Gopalakrishnan, P. Huczkowski, J. Pernpeintner, T. Fend, H. Hattendorf, R. Iskandar, J. Mayer, et al., ”Composition modifications and heat treatment procedures for increasing the emissivity of alumina surface scales on FeCrAl alloys,” Mater. High Temp. 29, 249–256 (2012).

M. Nowak, ”Determination of optical constants and average thickness of inomogeneous-rough thin films using spectral dependence of optical transmittance,” Thin Solid Films 254, 200–210 (1995).

C. Mitterer, F. Holler, F. Üstel, and D. Heim, ”Application of hard coatings in aluminium die casting - soldering, erosion and thermal fatigue behaviour,” Surf. Coat. Tech. 125, 233–239 (2000).

R. Kingston, Optical Sources, Detectors, and Systems - Fundamentals and Applications (1st edition, Academic Press, Boston, 1995).