Journal of the European Optical Society - Rapid publications, Vol 9 (2014)

Modelling line edge roughness in periodic line-space structures by Fourier optics to improve scatterometry

H. Gross, S. Heidenreich, M.-A. Henn, G. Dai, F. Scholze, M. Bär


In the present paper, we propose a 2D-Fourier transform method as a simple and efficient algorithm for stochastical and numerical studies to investigate the systematic impacts of line edge roughness on light diffraction pattern of periodic line-space structures. The key concept is the generation of ensembles of rough apertures composed of many slits, to calculate the irradiance of the illuminated rough apertures far away from the aperture plane, and a comparison of their light intensities to those of the undisturbed, ’non-rough’ aperture. We apply the Fraunhofer approximation and interpret the rough apertures as binary 2D-gratings to compute their diffraction patterns very efficiently as the 2D-Fourier transform of the light distribution of the source plane. The rough edges of the aperture slits are generated by means of power spectrum density (PSD) functions, which are often used in metrology of rough geometries. The mean efficiencies of the rough apertures reveal a systematic exponential decrease for higher diffraction orders if compared to the diffraction pattern of the unperturbed aperture. This confirms former results, obtained by rigorous calculations with computational expensive finite element methods (FEM) for a simplified roughness model. The implicated model extension for scatterometry by an exponential damping factor for the calculated efficiencies allows to determine the standard deviation σ_r of line edge roughness along with the critical dimensions (CDs), i.e., line widths, heights and other profile properties in the sub-micrometer range. First comparisons with the corresponding roughness value determined by 3D atomic force microscopy (3D AFM) reveal encouraging results.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2014.14003]

Full Text: PDF

Citation Details

Cite this article


C. J. Raymond, M. R. Murnane, S. L. Prins, S. Sohail, H. Naqvi, J. R. McNeil, and J. W. Hosch, ”Multiparameter grating metrology using optical scatterometry,” J. Vac. Sci. Technol. B 15(2), 361–368 (1997).

M.-A. Henn, R. Model, M. Bär, M. Wurm, B. Bodermann, A. Rathsfeld, and H. Gross, ”On numerical reconstructions of lithographic masks in DUV scatterometry,” Proc. SPIE 7390, 73900Q (2009).

J. Perlich, F. M. Kamm, J. Rau, F. Scholze, and G. Ulm, ”Characterization of extreme ultraviolet masks by extreme ultraviolet scatterometry,” J. Vac. Sci. Technol. B 22, 3059 (2004).

F. Scholze, and C. Laubis, ”Use of EUV scatterometry for the characterization of line profiles and line roughness on photomasks,” in Proceedings to Mask and Lithography Conference, 1–9 (EMLC, Dresden, 2008).

F. Scholze, C. Laubis, U. Dersch, J. Pomplun, S. Burger, and F. Schmidt, ”The influence of line edge roughness and CD uniformity on EUV scatterometry for CD characterization of EUV masks,” Proc. SPIE 6617, 66171A (2007).

H. Gross, A. Rathsfeld, F. Scholze, and M. Bär, ”Profile reconstruction in extreme ultraviolet (EUV) scatterometry: modeling and uncertainty estimates,” Meas. Sci. Technol. 20, 105102 (2009).

H. Patrick, T. Germer, R. Silver, and B. Bunday, ”Developing an uncertainty analysis for optical scatterometry,” Proc. SPIE 7272, 72720T (2009).

A. Kato, and F. Scholze, ”Effect of line roughness on the diffraction intensities in angular resolved scatterometry,” Appl. Optics 49(31), 6102–6110 (2010).

H. Gross, M-A. Henn, S. Heidenreich, A. Rathsfeld, and M. Bär, ”Modeling of line roughness and its impact on the diffraction intensities and the reconstructed critical dimensions in scatterometry,” Appl. Optics 51, 7384–7394 (2012).

B. C. Bergner, T. A. Germer, and T. J. Suleski, ”Effective medium approximations for modeling optical reflectance from gratings with rough edges,” J. Opt. Soc. Am. A 27, 1083–1090 (2010).

C. A. Mack, ”Analytic form for the power spectral density in one, two, and three dimensions,” J. Micro-Nanolith. Mem. 10(4), 040501 (2011).

C. A. Mack, ”Generating random rough edges, surfaces, and volumes,” Appl. Optics 52, 1472–1480 (2013).

F. J. Torcal-Milla, L. M. Sanchez-Brea, and E. Bernabeu, ”Diffraction of gratings with rough edges,” Opt. Express 16, 19757–19769 (2008).

T. Schuster, S. Rafler, V. F. Paz, F. Frenner, and W. Osten, ”Fieldstitching with Kirchhoff-boundaries as a model based description for line edge roughness (LER) in scatterometry,” Microelectron. Eng. 86, 1029–1032 (2009).

M.-A. Henn, H. Gross, F. Scholze, M. Wurm, C. Elster, and M. Bär, ”A maximum likelihood approach to the inverse problem of scatterometry,” Opt. Express 20(12), 12771–12786 (2012).

M-A. Henn, S. Heidenreich, H. Gross, A. Rathsfeld, F. Scholze, and M. Bär, ”Improved grating reconstruction by determination of line roughness in extreme ultraviolet scatterometry,” Opt. Lett. 37(24), 5229 (2012).

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, Greenwood Village, 2005).

O. K. Ersoy, Diffraction, Fourier Optics, and Imaging (Wiley- Interscience, New York, 2006).

D. Voelz, Computational Fourier Optics (SPIE Press, Bellingham, 2011).

D. C. Champeney, Fourier transforms and their physical applications (Academic Press, London/New York, 1973).

A. Tarantola, Inverse problem theory (Elsevier, Amsterdam, 1987).

R.M. Al-Assaad, and D. M. Byrne, ”Error analysis in inverse scatterometry I. Modeling,” J. Opt. Soc. Am. A 24(2), 326–338 (2007).

M-A. Henn, H. Gross, S. Heidenreich, F. Scholze, C. Elster, and M. Bär, ”Improved reconstruction of Critical Dimensions in Extreme Ultraviolet Scatterometry by Modeling Systematic Errors,” Meas. Sci. Technol., (2014), at press.

G. Dai, K. Hahm, F. Scholze, M.-A. Henn, H. Gross, J. Fluegge, and H. Bosse, ”Measurements of CD and sidewall profile of EUV photomask structures using CD-AFM and Tilting-AFM,” Meas. Sci. Technol., (2014), at press.

G. Dai, W. Hässler-Grohne, and D. Hüser, ”New developments at Physikalisch-Technische Bundesanstalt in three-dimensional atomic force microscopy with tapping and torsion atomic force microscopy mode and vector approach probing strategy,” J. Micro- Nanolith. Mem. 11(1), 011004 (2012).