Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

Wavelength-dependent nonlinear optical loop mirror for simultaneous amplitude noise reduction at two wavelengths

O. Pottiez, B. Ibarra-Escamilla, E. A. Kuzin


We propose and study analytically and numerically a polarisation-imbalanced Nonlinear Optical Loop Mirror (NOLM) scheme exhibitinga wavelength-dependent nonlinear characteristic. The device includes a symmetric coupler, an isotropic (or, in practice, twisted nonpolarisation-maintaining) fibre loop and a section of high birefringence (HiBi) fibre to break the polarisation symmetry. Thanks to thewavelength-dependent phase shift of the HiBi fibre, wavelength-dependent switching is obtained. For proper orientation of the HiBi fibrein the loop plane and using linear input polarisation at 45° with respect to its birefringence axes, the NOLM switching power varies withwavelength, whereas its zero low-power transmission and 100% maximal transmission are constant. Through slight adjustments of the HiBifibre birefringence, which can be realised mechanically or thermally, the ratio between switching powers at two particular wavelengthscan be readily adjusted. We show numerically that this scheme can be applied to simultaneous amplitude regeneration of two wavelengthchannels exhibiting uneven power levels.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13059]

Full Text: PDF

Citation Details

Cite this article


A. A. Aboketaf, L. Cao, D. Adams, A. W. Elshaari, S. F. Preble, M. T. Crowley, L. F. Lester, and P. Ampadu, ”Hybrid OTDM and WDM for multicore optical communication,” in Proceedings of 2012 International Green Computing Conference (IGCC), 1-5 (IEEE, San Jose, 2012).

Gousia, G. M. Rather, and A. K. Sharma, ”WDM-OTDM based spectral efficient hybrid multiplexing technique inherent with properties of bandwidth elasticity and scalability,” Optik 121, 1036–1041 (2010).

P. J. Delfyett, B. Mathason, I. Nitta, and H. Shi, ”Novel multiwavelength mode-locked semiconductor lasers: physics and applications,” Int. J. Hi. Spe. Ele. Syst. 10, 309–317 (2000).

N. J. Doran, and D. Wood, ”Nonlinear optical loop mirror,” Opt. Lett. 13, 56–58 (1988).

H. Sotobayashi, C. Sawaguchi, Y. Koyamada, and W. Chujo, ”Ultrafast walk-off-free nonlinear optical loop mirror by a simplified configuration for 320-Gbit/s time-division multiplexing signal demultiplexing,” Opt. Lett. 27, 1555–1557 (2002).

J. H. Lee, T. Tanemura, Y. Takushima, and K. Kikuchi, ”All-optical 80-Gb/s add-drop multiplexer using fiber-based Nonlinear Optical Loop Mirror,” IEEE Photon. Technol. Lett. 17, 840–842 (2005).

T. Sakamoto and K. Kikuchi, ”160-Gb/s operation of Nonlinear Optical Loop-Mirror with an optical bias controller,” IEEE Photon. Technol. Lett. 17, 1058–1060 (2005).

P. Vorreau, F. Parmigiani, M. Ibsen, P. Petropoulos, D. J. Richardson, W. Freude, and J. Leuthold, ”TDM-to-WDM conversion based on NOLM from 128.1 Gbit/s to 3x42.7 Gbit/s,” in Proceedings of 2008 ITG Symposium on Photonic Networks, 1–3 (IEEE, Leipzig, 2008).

M. D. Pelusi, Y. Matsui, and A. Suzuki, ”Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror,” IEEE J. Quantum Electron. 35, 867–874 (1999).

M. Attygalle, A. Nirmalathas, and H. F. Liu, ”Novel technique for reduction of amplitude modulation of pulse trains generated by subharmonic synchronous mode-locked laser,” IEEE Photon. Technol. Lett. 14, 543–545 (2002).

M. Meissner, M. Rösch, B. Schmauss, and G. Leuchs, ”12 dB of noise reduction by a NOLM-based 2-R regenerator,” IEEE Photon. Technol. Lett. 15, 1297–1299 (2003).

A. Bogoni, P. Ghelfi, M. Scaffardi, and L. Potì, ”All-optical regeneration and demultiplexing for 160-Gb/s transmission systems using a NOLM-based three-stage scheme,” IEEE J. Sel. Topics Quantum Electron. 10, 192–196 (2004).

S. Boscolo, S. K. Turitsyn, and K. J. Blow, ”Nonlinear loop mirrorbased all-optical signal processing in fiber-optic communications,” Opt. Fiber Technol. 14, 299–316 (2008).

K. Cvecek, G. Onishchukov, K. Sponsel, A. G. Striegler, B. Schmauss, and G. Leuchs, ”Experimental investigation of a modified NOLM for phase-encoded signal regeneration,” IEEE Photon. Technol. Lett. 18, 1801–1803 (2006).

T. Ohara, H. Takara, A. Hirano, K. Mori, and S. Kawanishi, ”40- Gb/sx4-channel all-optical multichannel limiter utilising spectrally filtered optical solitons,” IEEE Photon. Technol. Lett. 15, 763–765 (2003).

M. Vasilyev, and T. I. Lakoba, ”All-optical multichannel 2R regeneration in a fiber-based device,” Opt. Lett. 30, 1458–1460 (2005).

Ch. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, ”All-fiberized dispersionmanaged multichannel regeneration at 43 Gb/s,” IEEE Photon. Technol. Lett. 20, 1854–1856 (2008).

L. Provost, F. Parmigiani, P. Petropoulos, and D. J. Richardson, ”Investigation of simultaneous 2R regeneration of two 40-Gb/s channels in a single optical fiber,” IEEE Photon. Technol. Lett. 20, 270– 272 (2008).

M. E. Fermann, F. Haberl, M. Hofer, and H. Hochreiter, ”Nonlinear amplifying loop mirror,” Opt. Lett. 15, 752–754 (1990).

T. I. Lakoba, J. R. Williams, and M. Vasilyev, ”NALM-based, phasepreserving 2R regenerator of high-duty-cycle pulses,” Opt. Express 19, 23017–23028 (2011).

B. Bakhshi, M. Vaa, E. A. Golovchenko, H. Li, and G. T. Harvey, ”Impact of gain-flattening-filter ripple in long-haul WDM systems,” in Proceedings of 27th Eur. Conf. On Opt. Comm. (ECOC’01), 448– 449 (IEEE, Amsterdam, 2001).

D. A. Pattison, P. N. Kean, W. Forysiak, I. Bennion, and N. J. Doran, ”Bandpass switching in a nonlinear-optical loop mirror,” Opt. Lett. 20, 362–364 (1995).

E. A. Kuzin, N. Korneev, J. W. Haus, and B. Ibarra-Escamilla, ”Theory of nonlinear loop mirrors with twisted low-birefringence fiber,” J. Opt. Soc. Am. B 18, 919–925 (2001).

T. Tanemura and K. Kikuchi, ”Circular-birefringence fiber for nonlinear optical signal processing,” J. Lightwave Technol. 24, 4108– 4119 (2006).

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, F. Gutiérrez-Zainos, U. Ruiz-Corona, and J. T. Camas-Anzueto, ”High-order amplitude regularization of an optical pulse train using a power-symmetric NOLM with adjustable contrast,” IEEE Photon. Technol. Lett. 17, 154–156 (2005).

O. Pottiez, R. Grajales-Coutiño, B. Ibarra Escamilla, E. A. Kuzin, and J. C. Hernandez-Garcia, ”Adjustable noise-like pulses from a figure-eight fiber laser,” Appl. Opt. 50, E24–E31 (2011).

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, and F. Mendez- Martinez, ”Theoretical investigation of the NOLM with highly twisted fibre and a l/4 birefringence bias,” Opt. Commun. 254, 152–167 (2005).

R. Ulrich, and A. Simon, ”Polarization optics of twisted singlemode fibers,” Appl. Opt. 18, 2241–2251 (1979).

O. Pottiez, B. Ibarra Escamilla, and E. A. Kuzin, ”Large amplitude noise reduction in ultrashort pulse trains using a power-symmetric Nonlinear Optical Loop Mirror,” Opt. & Laser Technol. 41, 384–391 (2009).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, San Diego, 2001).

N. Korneev, E. A. Kuzin, B. A. Villagomez-Bernabe, O. Pottiez, B. Ibarra-Escamilla, A. González-García, and M. Durán-Sánchez, ”Raman-induced polarization stabilization of vector solitons in circularly birefringent fibers,” Opt. Express 20, 24288–24294 (2012).

I. Mandelbaum, M. Bolshtyansky, T. F. Heinz, and A. R. H. Walker, ”Method for measuring the Raman gain tensor in optical fibers,” J. Opt. Soc. Am. B 23, 621–627 (2006).

A. Bogoni, M. Scaffardi, P. Ghelfi, and L. Potì, ”Nonlinear Optical Loop Mirrors: Investigation solution and experimental validation for undesirable counterpropagating effects in all-optical signal processing,” IEEE J. Sel. Topics Quantum Electron. 10, 1115–1123 (2004).

F. Zhang, and J. W. Y. Lit, ”Temperature and strain sensitivity measurements of high-birefringent polarization-maintaining fibers,” Appl. Opt. 32, 2213–2218 (1993).