Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

Optical and THz Galois diffusers

M. Jaax, S. Wolff, B. Laegel, H. Fouckhardt

Abstract


Binary surface reliefs with sub-wavelength features making up a pseudorandom pattern based on mathematical Galois fields GF(p^m) [1, 2] can scatter incoming waves into a large number of diffraction maxima within a huge solid angle. A one-dimensional (1D) Galois number sequence can be folded into a two-dimensional (2D) array by the sino-representation [2]. This concept was been verified for acoustic waves a long time ago [3, 4] and is investigated here for visible light and THz waves. Our Galois diffusers are designed as reflection reliefs and realised by electron beam lithography for the optical regime and UV photolithography for the THz regime. Our results show that optical and THz Galois surfaces are excellent diffusers for electromagnetic waves; they distribute the reflected intensity evenly over a large number of maxima nearly within the entire half solid angle in the backward direction.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13020]

Full Text: PDF

Citation Details


Cite this article

References


E. Bach, and J. Shallit, Algorithmic number theory (MIT Press, Cambridge, 1996).

M. R. Schroeder, Number theory in science and communication (Springer, Berlin, 2006).

B. Costa, A. Folacci, and P. Gabrielli, ”Diffraction of ultrasonic waves from elastic Galois gratings,” J. Appl. Phys. 79, 2879–2889 (1996).

T. J. Cox, P. D’Antonio, and M. Schroeder, ”Acoustic absorbers and diffusers, theory, design and application,” J. Acoust. Soc. Am. 117, 289–330 (2005).

H. Fouckhardt, E. Hein, D. Fox, and M. Jaax, ”Multitude of glass surface roughness morphologies as a tool box for dosed optical scattering,” Appl. Optics 49, 1364–1372 (2010).

H. P. Herzig, and P. Kipfer, ”Aperture-Modulated Diffusers (AMDs),” in International Trends in Optics and Photonics ICO IV, Asakura, ed., 247–257 (Springer, Berlin/Heidelberg, 1999).

H. Dammann, ”Optische Gitter - moderne Anwendungen,” Physik in unserer Zeit 11, 83–91 (1980).

H. P. Herzig, D. Prongué, and R. Daendliker, ”Design and Fabrication of Highly Efficient Fan-Out Elements,” Jpn. J. Appl. Phys. 29, L1307–L1309 (1990).

T. R. Sales, ”Efficient and uniform illumination with microlensbased band-limited diffusers,” Photon. Spectra 44, 49–53 (2010).

R. Bitterli, T. Scharf, H. P. Herzig, W. Noell, N. de Rooij, A. Bich, S. Roth, et al., ”Fabrication and characterization of linear diffusers based on concave micro lens arrays,” Opt. Express 18, 14251–14261 (2010).

H. Dammann, and K. Groertler, ”High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312– 315 (1971).

H. Dammann, and E. Klotz, ”Coherent optical generation and inspection of two-dimensional periodic structures,” Opt. Acta 24, 505–515 (1977).

W. Petirsch, and A. Schwab, ”Investigation of the field uniformity of a mode-stirred chamber using diffusers based on acoustic theory,” IEEE Conf. Publ.: Electromagnetic Compatibility 41, 446–451 (1999).

F. Ellrich, T. Weinland, D. Molter, J. Jonuscheit, and R. Beigang, ”Compact fiber-coupled terahertz spectroscopy system pumped at 800 nm wavelength,” Rev. Sci. Instrum. 82, 053102 (2011).

M. E. Motamedi, ”Micro-opto-electro-mechanical systems,” Opt. Eng. 33, 3505–3517 (1994).

W. Freese, T. Kaempfe, E.-B. Kley, and A. Tuennermann, ”Design of binary subwavelength multiphase level computer generated holograms,” Opt. Lett. 35, 676–678 (2010).