Journal of the European Optical Society - Rapid publications, Vol 6 (2011)

Scalar Readout Model for Super-Rens Focused Spot

A. C. Assafrao, S. F. Pereira, H. P. Urbach


A scalar readout model is presented to investigate the readout characteristics of the super resolution near field (SRens) disc. The super resolution effect is described by means of a threshold model, where the super resolution material imparts a phase change on the focused spot if the laser density energy is high enough to trigger the SRens effect. This approach results in a very fast way of computing the basic characteristics of the SRens readout signal, being suitable for large investigations. Moreover, many simulation results have been experimentally confirmed by other groups, which further validates the model. Thus, this simplified model is an useful tool for a better comprehension of the readout signal of the super resolution effect in optical data storage and other super resolution applications.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2011.11056]

Full Text: PDF

Citation Details

Cite this article


J. Tominaga, T. Nakano, and N. Atoda, "An approach for recording and readout beyond the diffraction limit with an Sb thin film", Appl. Phys. Lett. 73, 2078 (1998).

J. Tominaga, H. Fuji, A. Sato, T. Nakano, and N. Atoda, "The Characteristics and the Potential of Super Resolution Near-Field Structure", Jpn. J. Appl. Phys. 39, 957 (2000).

J. Tominaga, H. Fuji, A. Sato, T. Nakano, T. Fukaya, and N. Atoda, "The Near-Field Super-Resolution Properties of an Antimony Thin Film", Jpn. J. Appl. Phys. 37, L1323 (1998).

T. Shintani, M. Terao, H. Yamamoto, and T. Naito, "A New Super-Resolution Film Applicable to Read-Only and Rewritable Optical Disks", Jpn. J. Appl. Phys. 38, 1656 (1999).

D. Rong Ou, J. Zhu, and J. Hao Zhao, "Approach for imaging optical super-resolution based on Sb films", Appl. Phys. Lett. 82, 1521 (2003).

M. Kuwahara, T. Shima, A. Kolobov, and J. Tominaga, "Thermal Origin of Readout Mechanism of Light-Scattering Super-Resolution Near-Field Structure Disk", Jpn. J. Appl. Phys. 43, L8 (2004).

T. Shima, M. Kuwahara, T. Fukaya, T. Nakano, and J. Tominaga, "Super-Resolutional Readout Disk with Metal-Free Phthalocyanine Recording Layer", Jpn. J. Appl. Phys. 43, L88 (2004).

Y. Yamakawa, K. Kurihara, M. Kuwahara, T. Shima, T. Nakano, and J. Tominaga, "Optical Disc Simulation Program Unified by Electromagnetic and Thermal Distributions", Jpn. J. Appl. Phys. 45, 1463 (2006).

J. Pichon, R. Anciant, J. M. Bruneau, B. Hyot, S. Gidon, M. F. Armand, and L. Poupinet, Multiphysics simulation of superresolution BD ROM optical disk readout, (Optical Data Storage, SPIE, 2006).

J. S. Kim, K. Kwak, and C.-Y. You, "Signal Modulation of Super Read Only Memory with Thermally Activated Aperture Model", Jpn. J. Appl. Phys. 47, 5845 (2008).

A. C. Assafrao, S. F. Pereira, H. P. Urbach, C. Fery, L. von Riewel, and S. Knappmann, "A numerical model for superresolution effect in optical discs", (SPIE, 2010)

A. Fukumoto, and S. Kubota, "Superresolution of Optical Disks Using a Small Aperture", Jpn. J. Appl. Phys. 31, 529 (1992).

T. Ariyoshi, T. Shimano, T. Shintani, and M. Terao, "Read-Out Signal Simulation of an Optical Disk Having an Oxide Super-Resolution Film", Jpn. J. Appl. Phys. 39, 4013 (2000).

J. K. Lee, J. H. Kim, C. S. Chung, I. O. Hwang, K. H. Jung, and H. K. Kim, "Method and Apparatus for Reproducing Data of Super Resolution Near Field Read-Only Memory disc", U.S. Patent 20060002281 (2006).

H. H. Hophins, "Diffraction theory of laser read-out systems for optical video discs", J. Opt. Soc. Am. 69, 4 (1979).

J. Braat, Readout of Optical discs, Principles of Optical discs, (Adam Hilger, Bristol, UK, 1985).

V. B. Jipson, and C. C. Williams, "Two-dimensional modeling of an optical disk readout", Appl. Optics 14, 2202 (1983).

T. D. Milster, "New Way to Describe Diffraction From Optical Disks", Appl. Optics 37, 6878 (1998).

R. E. Simpson, P. Fons, X. Wang, A. V. Kolobov, T. Fukaya, and J. Tominaga, "Non-melting super-resolution near-field apertures in Sb-Te alloys", Appl. Phys. Lett. 97, 161906 (2010).

Thomson-Villingen, Personal Communication, (Delft, 2010)

M. Kuwahara, O. Suzuki, N. Taketoshi, Y. Yamakawa, T. Yagi, P. Fons, K. Tsutsumi, M. Suzuki, T. Fukaya, J. Tominaga, and T. Baba, "Measurements of Temperature Dependence of Optical and Thermal Properties of Optical Disk Materials", Jpn. J. Appl. Phys. 45, 1419 (2006).

S. Ohkubo, K. Aoki, and D. Eto, "Temperature dependence of optical constants for InSb films including molten phases", Appl. Phys. Lett. 92, 011919 (2008).

G. Pilard, C. Féry, L. Pacearescu, H. Hoelzemann, and S. Knappmann, "Study of Super-Resolution Read-Only-Memory Disk with a Semiconducting or Chalcogenide Mask Layer", Jpn. J. Appl. Phys. 48, 03A064 (2009).

A. C. Assafrao, S. F. Pereira, and H. P. Urbach, "On the Focused Field Embedded in a Super-Rens Medium", Jpn. J. Appl. Phys. 50, 102206 (2011).

J. Tominaga, and T. Nakano, Optical Near Field Recording, (Springer, Heidelberg, 2004).

T. D. Milster, and R. S. Upton, "Fundamental Principles of Crosstalk in Optical Data Storage", Jpn. J. Appl. Phys. 38, 1608 (1999).

N. Miyagawa, Y. Gotoh, E. Ohno, K. Nishiuchi, and N. Akahira, "Land and Groove Recording for High Track Density on Phase- Change Optical Disks", Jpn. J. Appl. Phys. 32, 5324 (1993).

H. Minemura, Y. Anzai, S. Eto, J. Ushiyama, and T. Shintani, "Novel Signal Processing Method for Super-Resolution Discs" in Proceedings on Optical Data Storage, (Optical Society of America, Portland, Oregon, 2007).