Journal of the European Optical Society - Rapid publications, Vol 5 (2010)

(lnP)5/(Ga0.47 In0.53 As)5 superlattice confined 1.5 µm multiquantum well laser grown by all- solid source atomic layer molecular beam epitaxy

M. L. Dotor, P. Huertas, P. A. Postigo, D. Golmayo, F. Briones

Abstract


Room temperature laser emission near 1.55µm is obtained in compressive strained multiquantum well separate confinement heterostructure grown at 340°C by all-solid source Atomic Layer Molecular Beam Epitaxy , where (lnP)5/(Ga0.47 In0.53 As)5, lattice-matched short period superlattices have been used as pseudoquaternary barrier to confine Ga0.27 In0.73 As wells . These preliminary results show that solid source Atomic Layer Molecular Beam Epitaxy is well adapted to fabricate advanced optoelectronic components including pseudoquaternary material.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2010.10049s]

Full Text: PDF

Citation Details


Cite this article

References


W. T. Tsang, "Advances in MOVPE, MBE, and CBE" J. Cryst. Growth 120, 1-24 (1992).

F. Capasso, H. M. Cox, A. L. Hutchinson, N. A. Olsson, and S. G. Hummel, "Pseudo-quaternary GaInAsP semiconductors: A new Ga0.47In0.53As/InP graded gap superlattice and its applications to avalanche photodiodes" Appl. Phys. Lett. 45, 1193-1195 (1984).

L. M. Dotor, D. Golmayo, and F. Briones, "(Ga0.22In0.78As)m/(Ga0.22In0.78P)m superlattices grown by atomic-layer molecular beam epitaxy on InP" J. Cryst. Growth 127, 619-622 (1993).

A. Ginty, J. D. Lambkin, L. Considine, and W. M. Kelly, "Long wavelength quantum well lasers with InGaAs/lnP superlattice optical confinement and barrier layers" Electron. Lett. 29, 684-685 (1993).

L. M. Dotor, P. Huertas, D. Golmayo, and F. Briones, "Ga0.47In0.53As multiquantum well heterostructures, confined by pseudoquaternary (InP)n/(Ga0.47In0.53As)m short period superlattices latticematched to InP" Appl. Phys. Lett. 62, 891-893 (1993).

F. Briones, L. Gonzalez, and A. Ruiz, "Atomic layer molecular beam epitaxy (ALMBE) of Ill-V compounds: growth modes and applications" Appl. Phys. A 49, 7290-7307 (1989).

B. X. Yang, and H. Hasegawa, "Properties of InP grown by migration enhanced epitaxy using polycrystalline InP as phosphorus source" in Proceedings to the Fifth International Conference on Indium Phosphide and Related Materials, 271-274 (IEEE, Paris, 1993).

L. M. Dotor, P. Huertas, A. P. Postigo, D. Golmayo, and F. Briones, "p-Type InP grown at low temperatures by atomic layer molecular beam epitaxy (ALMBE)" Electron. Lett. 29, 1270-1271 (1993).

L. M. Dotor, P. Huertas, P. A. Postigo, D. Golmayo, and F. Briones, "Emisión laser en 1.5 mm en una estructura de tipo pozo cuántico múltiple crecida sobre InP por epitaxia de haces moleculares (MBE)" in Proceedings of the VIII National Symposium of the International Union of Radio Science (URSI) 2, 1353-1356 (Universidad Politécnica de Valencia, Spain, 1993).

C. E. Zah, R. Bhat, F. J. Favire, S. G. Menocal, N. C. Andreadakis, K. W. Cheung, D. M. D. Hwang, N. A. Koza, and T. P. Lee, "Low threshold 1.5 pm compressive-strained multiple and single quantum well lasers" IEEE J. Quantum Elect. 27, 1440-1450 (1991).

G. W. Wicks, M. W. Koch, J. A. Varriano, F. G. Johnson, C. R. Wie, H. M. Kim, and P. Colombo, "Use of a valved, solid phosphorus source for the growth of Ga0.5In0.5P and Al0.5In0.5P by molecular beam epitaxy" Appl. Phys. Lett. 59, 342-344 (1991).

F. Briones "Phosphorus effusion cell for Molecular Beam Epitaxy" U. S. Patent 5431735 (1995).

S. F. Yoon, H. Q. Zheng, P. H. Zhang, K. W. Mah, and G. I. Ng, "Electrical and optical properties of InP grown by molecular beam epitaxy using a valved phosphorus cracker cell" Thin Solid Films 326, 233-237 (1998).

J. N. Baillargeon, A. Y. Cho, F. A. Thiel, R. J. Fischer, P. J. Pearrah, and K. Y. Cheng, "Reproducibility studies of lattice matched GaInAsP on (100) InP grown by molecular beam epitaxy using solid phosphorus" Appl. Phys. Lett. 65, 207-209 (1994).

P. A. Postigo, M. L. Dotor, P. Huertas, D. Golmayo, and F. Briones, "Electrical and optical properties of undoped InP grown at low temperature by atomic layer molecular beam epitaxy" J. Appl. Phys. 77, 402-404 (1995).

J. C. Harmand, J. P. Praseuth, E. Idiart-Alhor, R. Palla, J. L. Pelouard, and M. Quillec, "Continuous molecular beam epitaxy of arsenides and phosphides applied to device structures on InP substrates" J. Cryst. Growth 150, 1292-1296 (1995).

M. Pessa, M. Toivonen, M. Jalonen, P. Savolainen, and A. Salokatve, "All-solid-source molecular beam epitaxy for growth of IIIV compound semiconductors" Thin Solid Films 306, 237-243 (1997).

F. Suarez, D. Fuster, L. Gonzalez, Y. Gonzalez, J. M. Garcia, and M. L. Dotor, "Self-assembled InAs quantum wire lasers on (001)InP at 1.6 mm" Appl. Phys. Lett. 89, 091123-1-3 (2006).

R. Aidam, R. Lösch, R. Driad, K. Schneider, and R. Makon, "Solid source MBE growth on InP-based DHBTs for high-speed data communication" J. Cryst. Growth 301/302, 1001-1004 (2007).

S. H. Chen, S. Y. Wang, R. J. Hsieh, and J. I. Chyi, "InGaAsSb/InP double heterojunction bipolar transistors grown by solid-source molecular beam epitaxy" IEEE Electr. Device L. 28, 679-681 (2007).

L. J. Martínez, B. Alén, I. Prieto, D. Fuster, L. González, Y. González, M. L. Dotor, and P. A. Postigo, "Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires" Opt. Express 17, 14993-15000 (2009).