Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

Label-free discrimination of cells undergoing apoptosis by hyperspectral confocual reflectance imaging

F. R. Bertani, E. Botti, A. Costanzo, L. Ferrari, V. Mussi, M. D’Alessandro, S. Selci


Among the optical techniques used for exploring the properties of cells and tissues, those based on hyperspectral label-free analysis are particularly interesting due to their non-invasive character and their ability to fast collect a huge number of information on the different sample constituents and their spatial distribution. Here we present results obtained with a novel hyperspectral reflectance confocal microscope of label-free discrimination of cells undergoing apoptosis. Our data, analyzed by means of a powerful statistical method, enable to obtain information on the biological status at a single cell level through the local measurement of reflectivity. Furthermore, an optical model of the local dielectric response gives an additional insight of the parameters linking the optical responsivity to the biological status.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13078]

Full Text: PDF

Citation Details

Cite this article


M. A. Calin, S. V. Parasca, R. Savastru, M. R. Calin, and S. Dontu, ”Optical techniques for the noninvasive diagnosis of skin cancer,” J. Cancer. Res. Clin. Oncol. 139, 1083–1104 (2013).

N. Bedard, R. A. Schwarz, A. Hu, V. Bhattar, J. Howe, M. D. Williams, A. M. Gillenwater, R. Richards-Kortum, and T. S. Tkaczyk, ”Multimodal snapshot spectral imaging for oral cancer diagnostics: a pilot study,” Biomed. Opt. Express 4, 938–949 (2013).

J. Q. Brown, T. M. Bydlon, S. A. Kennedy, M. L. Caldwell, J. E. Gallagher, M. Junker, L. G. Wilke, W. T. Barry, J. Geradts, and N. Ramanujam, ”Optical spectral surveillance of breast tissue landscapes for detection of residual disease in breast tumor margins,” PLoS ONE 8, e69906 (2013).

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, ”Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34, 1061–1068 (2006).

A. M. Siddiqi, H. Li, F. Faruque, W. Williams, K. Lai, M. Hughson, S. Bigler, J. Beach, and W. Johnson, ”Use of hyperspectral imaging to distinguish normal, precancerous, and cancerous cells,” Cancer Cytopathol. 114, 13–21 (2008).

D. C. Heinz, and I. C. Chein, ”Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery,” IEEE T. Geosci. Remote 39, 529–545 (2001).

A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, ”Imaging spectrometry for earth remote sensing,” Science 228, 1147–1153 (1985).

G. L. Alexandrino, and R. J. Poppi, ”NIR imaging spectroscopy for quantification of constituents in polymers thin films loaded with paracetamol,” Anal. Chim. Acta 765, 37–44 (2013).

D. Wu, and D.-W. Sun, ”Application of visible and near infrared hyperspectral imaging for non-invasively measuring distribution of water-holding capacity in salmon flesh,” Talanta 116, 266–276 (2013).

S. V. Panasyuk, S. Yang, D. V. Faller, D. Ngo, R. A. Lew, J. E. Freeman, and A. E. Rogers, ”Medical hyperspectral imaging to facilitate residual tumor identification during surgery,” Cancer Biol. Ther. 6, 439–446 (2007).

J. Spigulis, ”Biophotonic technologies for non-invasive assessment of skin condition and blood microcirculation,” Latvian J. Phys. Techn. Sci. 49, 63–80 (2012).

L. B. Twiggs, N. A. Chakhtoura, D. G. Ferris, L. C. Flowers, M. L. Winter, D. R. Sternfeld, M. Lashgari, A. F. Burnett, S. S. Raab, and E. J. Wilkinson, ”Multimodal hyperspectroscopy as a triage test for cervical neoplasia: pivotal clinical trial results,” Gynecol. Oncol. 130, 147–151 (2013).

L. Görlitz, B. H. Menze, B. M. Kelm, and F. A. Hamprecht, ”Processing spectral data,” Surf. Interface Anal. 41, 636–644 (2009).

J. F. Kerr, A. H. Wyllie, and A. R. Currie, ”Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics,” Br. J. Cancer 26, 239–257 (1972).

M. P. Mattson, ”Apoptosis in neurodegenerative disorders,” Nat. Rev. Mol. Cell Biol. 1, 120–130 (2000).

S. W. Lowe, and A. W. Lin, ”Apoptosis in cancer,” Carcinogenesis 21, 485–495 (2000).

P. Meier, A. Finch, and G. Evan, ”Apoptosis in development,” Nature 407, 796–801 (2000).

F. R. Bertani, L. Ferrari, V. Mussi, E. Botti, A. Costanzo, and S. Selci, ”Living matter observations with a novel hyperspectral supercontinuum confocal microscope for VIS to near-IR reflectance spectroscopy,” Sensors 13, 14523–14542 (2013).

U. Henseleit, T. Rosenbach, and G. Kolde, ”Induction of apoptosis in human HaCaT keratinocytes,” Arch. Dermatol. Res. 288, 676–683 (1996).

R. Takasawa, H. Nakamura, T. Mori, and S. Tanuma, ”Differential apoptotic pathways in human keratinocyte HaCaT cells exposed to UVB and UVC,” Apoptosis 10, 1121–1130 (2005).

G. F. Byrne, P. F. Crapper, and K. K. Mayo, ”Monitoring land-cover change by principal component analysis of multitemporal landsat data,” Remote Sens. Environ. 10, 175–184 (1980).

M. Kamruzzaman, D.-W. Sun, G. ElMasry, and P. Allen, ”Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis,” Talanta 103, 130–136 (2013).

R. Carneiro, and R. Poppi, ”A quantitative method using near infrared imaging spectroscopy for determination of surface composition of tablet dosage forms: an example of spirolactone tablets,” J. Braz. Chem. Soc. 23, 1570–1576 (2012).

G. Sciutto, P. Oliveri, S. Prati, M. Quaranta, S. Bersani, and R. Mazzeo, ”An advanced multivariate approach for processing X-ray fluorescence spectral and hyperspectral data from noninvasive in situ analyses on painted surfaces,” Anal. Chim. Acta 752, 30–38 (2012).

B. J. Tyler, G. Rayal, and D. G. Castner, ”Multivariate analysis strategies for processing ToF-SIMS images of biomaterials,” Biomaterials 28, 2412–2423 (2007).

M. Born, and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge, 1999).

A. Cricenti, S. Selci, F. Ciccacci, A. C. Felici, C. Goletti, Y. Zhu, and G. Chiarotti, ”Determination of the complex dielectric function of Si(111) 2 x 1, GaAs(110) and GaP(110) surfaces by polarized surface differential reflectivity,” Phys. Scripta 38, 199–203 (1988).

S. Nannarone, and S. Selci, ”Dielectric properties of the Si(111)2x1 surface: Optical constants and the energy-loss spectrum,” Phys. Rev. B 28, 5930–5936 (1983).

S. Selci, A. Cricenti, F. Ciccacci, A. C. Felici, C. Goletti, Z. Yong, and G. Chiarotti, ”Dielectric functions of Si(111)2x1, Ge(111)2x1, GaAs(110) and GaP(110) surfaces obtained by polarized surface differential reflectivity,” Surf. Sci. 189, 1023-1027 (1987).

S. Selci, F. R. Bertani, and L. Ferrari, ”Supercontinuum ultra wide range confocal microscope for reflectance spectroscopy of living matter and material science surfaces,” AIP Advances 1, 032143 (2011).