Journal of the European Optical Society - Rapid publications, Vol 10 (2015)

Spectrofluorometric characteristics of fluorescent dissolved organic matter in a surface microlayer in the Southern Baltic coastal waters

V. Drozdowska, P. Kowalczuk, M. Jozefowicz


This paper presents results of characterization of Dissolved Organic Matter (DOM) using fluorescence spectroscopy in the surface microlayers (SML) and subsurface layers (SS) in the Baltic Sea. Samples for spectroscopic measurements were collected during five research cruises in April/May and October 2013 and 2014 in a surface microlayer and a subsurface layer at a depth of 1 m along two transects from the river outlets to the open sea. The first transect was located from the Vistula River outlet to the Gdansk Deep and the second transect was located ´ from the Łeba River outlet to Słupsk Furrow. Results indicated that DOM fluorescence intensity in the SML is higher by 20% compared to the SS. The Humification Index, HIX values were lower in SML than SS by 13%. That indicates that SML is depleted in molecules with high molecular weight and higher aromaticy. The inverse relationship of fluorescence intensity of dominant peaks with salinity both in SML and SS suggests that FDOM variability is regulated mostly by terrestrial DOM input.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2015.15050]

Full Text: PDF

Citation Details

Cite this article


A. Soloviev, and R. Lukas, Near-surface layer of the ocean: structure, dynamics and applications (Springer, Berlin, 2006).

P. S. Liss, and R. A. Duce, The sea surface and global change (Cambridge University Press, Cambridge, 2005).

M. A. Cunliffe, S. Engel, S. Frka, B. Gasparovic, C. Guitart, J. C. Murrell, M. Salter, et al., ”Sea surface microlayers: a unified physicochemical and biological perspective of the air-ocean interface,” Prog. Oceanogr. 109, 104–116 (2013).

Q. Gao, C. Leck, C. Rauschenberg, and P. A. Matrai, ”On the chemical dynamics of extracellular polysaccharides in the high Arctic surface microlayer,” Ocean Sci. 8, 401–418 ( 2012).

J. M. Sieburth, and J. T. Conover, ”Slicks associated with Trichodesmium blooms in the Sargasso sea,” Nature 205, 830–831 (1965).

M. Cunliffe, R. C. Upstill-Goddard, and J. C. Murrell, ”Microbiology of aquatic surface microlayers,” FEMS Microbiol. Rev. 35, 233–246 (2011).

P. Coble, ”Marine optical biogeochemistry: the chemistry of ocean color,” Chem. Revi. 107, 402–418 (2007).

S. Opsahl, and R. Benner, ”Distribution and cycling of terrigenous dissolved organic matter in the ocean,” Nature 386, 480–482 (1997).

J. R. Lakowicz, Principles of fluorescence spectroscopy (third edition, Plenum Press, New York, 2006).

N. Hudson, A. Baker, and D. Reynolds, ”Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters–a review,” River Res. Appl. 23, 631–649 (2007).

P. Coble, ”Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy,” Mar. Chem. 51, 325–346 (1996).

H. Haken, and H. C. Wolf, Molecular physics and elements of quantum chemistry: introduction to experiments and theory (Springer Verlag, Berlin, 1995).

D. Milori , L. Martin-Neto, C. Bayer, J. Mielniczuk, and V. Vagnato, ”Humification degree of soil humic acids determined by fluorescence spectroscopy,” Soil Sci. 167, 739–749 (2002).

A. Zsolnay, E. Baigar, M. Jimnez, B. Steinweg, and F. Saccomandi, ”Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying,” Chemosphere 38, 45–50 (1999).

K. Kalbitz, W. Geyer, and S. Geyer, ”Spectroscopic properties of dissolved humic substances–a reflection of land use history in a fen area,” Biogeochemistry 47, 219–238 (1999).

W. D. Garrett, ”Collection of slick-forming materials from the sea surface,” Limnol Oceanogr. 10, 602–605 (1965).

B. Cosovi ´ c, and V. Vojvodic, ”Voltammetric analysis of surface ´ active substances in natural seawater,” Electroanal. 10, 429–434 (1998).

C. Belzile, C. S. Roesler J. P. Christensen, N. Shakhova, and I. Semiletov, ”Fluorescence measured using the WETStar DOM fluorometer as a proxy for dissolved matter absorption,” Estuar. Coast. Shelf S. 67, 441–449 (2006).

P. Kowalczuk, J. Ston-Egiert, W. J. Cooper, R. F. Whitehead, and M. J. Durako, ”Characterization of chromophoric dissolved organic matter (CDOM) in the Baltic Sea by excitation emission matrix fluorescence spectroscopy,” Mar. Chem. 96, 273–292 (2005).

V. Drozdowska, and M. Józefowicz, ”Spectroscopic studies of marine surfactants in the southern Baltic Sea,” Oceanol. 57, 159–167 (2015).

V. Drozdowska, W. Freda, E. Baszanowska, K. Rudz, M. Darecki, J. R. Heldt, and H. Toczek, ”Spectral properties of natural and oil polluted Baltic seawater – results of measurements and modeling,” Eur. Phys. J-Spec. Top. 222, 1–14 (2013).

E. Parlanti, K. Wörz, L. Geoffroy, and M. Lamotte, ”Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs,” Org. Geochem. 31, 1765–1781 (2000).

Y.-P. Chin, G. Aiken, and E. O’Loughlin, ”Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances,” Environ. Sci. Technol. 28, 1853–1858 (1994).

D. M. McKnight, R. Harnisch, R. L. Wershaw, J. S. Baron, and S. Schiff, ”Chemical characteristics of particulate, colloidal, and dissolved organic matter in Loch Vale Watershed, Rocky Mountain National Park,” Biogeochemistry 36, 99–214 (1997).

S. Glatzel, K. Kalbitz, M. Dalva, and T. Moore, ”Dissolved organic matter properties and their relationship to carbon dioxide efflux from restored peat bogs,” Geoderma 113, 397–411 (2003).

S. Uscinowicz (ed.), Geochemistry of Baltic Sea, surface sediments (PIG-PIB, Warsaw, 2011).

H. F. Wilson, and M. A. Xenopoulos, ”Effects of agricultural land use on the composition of fluvial dissolved organic matter,” Nature Geosci. 2, 37–41 (2009).

C. Huguet, J. Kim, G. de Lange, J. S. Sinninghe Damsté, and S. Schouten, ”Effects of long term oxic degradation on the TEX86 and BIT organic proxies,” Org. Geochem. 40, 1188–1194 (2009).

N. Senesi, T. M. Miano, M. R. Provenzano, and G. Brunetti, ”Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy,” Soil Sci. 152, 259–271 (1991).

T. Ohno, ”Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter,” Environ. Sci. Technol. 36, 742–746 (2002).

F. J. Stevenson, Humus Chemistry (Wiley, New York, 1982).

T. M. Miano, and N. Senesi, ”Synchronous excitation fluorescence spectroscopy applied to soil humic substances chemistry,” Sci. Total Environ. 117, 41–51 (1992).

S.-C. Tam, and G. Sposito, ”Fluorescence spectroscopy of aqueous pine litter extracts: effects of humification and aluminium complexation,” J. Soil Sci. 44, 513–524 (1993).

C. J. Williams, Y. Yamashita, H. F. Wilson, R. Jaffe, and M. A. Xenopoulos, ”Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems,” Limnol. Oceanogr. 55, 1159–1171 (2010).