Journal of the European Optical Society - Rapid publications, Vol 10 (2015)

Enhancements on multi-exposure LASCA to reveal information of speed distribution

D. Zölei-Szénási, S. Czimmer, T. Smausz, F Domoki, B. Hopp, L. Kemény, F. Bari, I. Iványi


Laser Speckle Contrast Analysis (LASCA) has been proven to be a highly useful tool for the full-field determination of the blood perfusion of a variety of tissues. Some of the major advantages of this technique are its relatively high spatial and temporal resolution as well as its good or excellent accordance to Doppler systems. However, traditionally it is only able to report a single characteristic speed regarding to the actual range of interest. This might be misleading if multiple characteristic speeds are present (e. g. tremor and perfusion in skin) or if several kinds of tissues are mixed (e. g. parenchyma and vessels in brain). Here we present two relatively simple extensions of LASCA for these problems. The application of multiple autocorrelation functions (combined with the usage of multiple exposure times) can help in the separation of multiple characteristic speeds. We also present a useful method for the separation of information those originate from a mixture of different tissues. The latter method can be also implemented to single-exposure systems.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2015.15033]

Full Text: PDF

Citation Details

Cite this article


A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, ”Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003).

A. Kharlamov, B. R. Brown, K. A. Easley, and S. C. Jones, ”Heterogeneous response of cerebral blood flow to hypotension demonstrated by laser speckle imaging flowmetry in rats,” Neurosci. Lett. 368(2), 151–156 (2004).

Y. Aizu, K. Ogino, T. Sugita, T. Yamamoto, N. Takai, and T. Asakura, ”Evaluation of blood flow at ocular fundus by using laser speckle,” Appl. Optics 31(16), 3020–3029 (1992).

M. Nagahara, Y. Tamaki, M. Araie, and H. Fujii, ”Real-time blood velocity measurements in human retinal vein using the laser speckle phenomenon,” Jpn. J. Ophthalmol. 43, 186–195 (1999).

K. R. Forrester, I. C. Stewart, I. J. Tulip, C. Leonard, and R. C. Bray, ”Comparison of laser speckle and laser Doppler perfusion imaging: measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40(6), 687–697 (2002).

J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, ”A comparison of two laser-based methods for determination of burn scar perfusion: Laser Doppler versus laser speckle imaging,” Burns 31(6), 744–752 (2005).

D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, ”Statistics of Local Speckle Contrast,” J. Opt. Soc. Am. A 25, 9–15 (2008).

J. D. Briers, and S. Webster, ”Laser speckle contrast analysis (LASCA), ”a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, ”Speckle-visibility spectroscopy: a tool to study timevarying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).

S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, ”Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Opt. Lett. 33(24), 2886–2888 (2008).

O. P. Thompson, M. Andrews, and E. Hirst, ”Correction for spatial averaging in laser speckle contrast analysis,” Biomed. Express 2(4), 1021–1029 (2011).

P. A. Lemieux, and D. J. Durian, ”Investigating non-Gaussian scattering processes by using nth-order intensity correlation functions,” J. Opt. Soc. Am. A 16, 1651–1664 (1999).

T. Smausz, D. Zölei, and B. Hopp, ”Real Correlation Time Measurement in Laser Speckle Contrast Analysis Using Wide Exposure Time Range Images,” Appl. Optics 48, 1425–1429 (2009)

A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang and A. K. Dunn, ”Robust Flow Measurement with Multi-exposure Speckle Imaging,” Opt. Express 16, 1975–1989 (2008).

J. W. Goodman, ”Statistical Properties of Laser Speckle Patterns,” in Laser Speckle and Related Phenomena, 9–75 (Springer, Berlin/Heidelberg, 1975).

A. F. Fercher and J. D. Briers, ”Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).

D. Zölei, T. Smausz, B. Hopp, and F. Bari, ”Multiple Exposure Time Based Laser Speckle Contrast Analysis: Demonstration of Applicability in Skin Perfusion Measurements,” P&O 1, 28–32 (2012).

O. B. Thompson, and M. K. Andrews, ”Tissue Perfusion Measurements, Multiple-exposure Laser Speckle Analysis Generates Laser Doppler-like Spectra,” J. Biomed. Opt. 15, 027015 (2010).

M. Nemati, C. N. Presura, H. P. Urbach, and N. Bhattacharya, ”Dynamic light scattering from pulsatile flow in the presence of induced motion artifacts,” Biomed. Express 5(7), 2145–2156 (2014).

D. Zölei, T. Smausz, B. Hopp, and F. Bari, ”Self-tuning laser speckle contrast analysis based on multiple exposure times with enhanced temporal resolution,” J. Eur. Opt. Soc.-Rapid 8, 13053 (2013).

A. S. Abdurashitov, V. V. Lychagov, O. A. Sindeeva, O. V. Semyachkina-Glushkovskaya, and V. V. Tuchin, ”Histogram analysis of laser speckle contrast image for cerebral blood flow monitoring,” Front. Optoelectron. 15, 10493 (2015).

F. Domoki, D. Zölei, O. Oláh, V. Tóth-Szüki, B. Hopp, and T. Smausz, ”Evaluation of Laser-speckle Contrast Image Analysis Techniques in the Cortical Microcirculation of Piglets,” Microvasc. Res. 83, 311–317 (2012).

T. Smausz, D. Zölei, and B. Hopp, ”Laser power modulation with wavelength stabilization in multiple exposure laser speckle contrast analysis,” Proc. SPIE 8413, 84131J (2012).

G. Mahé, P. Rousseau, S. Durand, S. Bricq, G. Leftheriotis, and P. Abraham, ”Laser speckle contrast imaging accurately measures blood flow over moving skin surfaces,” Microvasc. Res. 81(2), 183–188 (2011).