Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

Scattering and absorption properties of biomaterials for dental restorative applications

A. Fernandez-Oliveras, M. Rubiño, M. M. Pérez


The physical understanding of the optical properties of dental biomaterials is mandatory for their final success in restorative applications.Light propagation in biological media is characterized by the absorption coefficient, the scattering coefficient, the scattering phase function,the refractive index, and the surface conditions (roughness). We have employed the inverse adding-doubling (IAD) method to combine transmittanceand reflectance measurements performed using an integrating-sphere setup with the results of the previous scattering-anisotropygoniometric measurements. This has led to the determination of the absorption and the scattering coefficients. The aim was to opticallycharacterize two different dental-resin composites (nanocomposite and hybrid) and one type of zirconia ceramic, and comparatively studythem. The experimental procedure was conducted under repeatability conditions of measurement in order to determine the uncertaintyassociated to the optical properties of the biomaterials. Spectral variations of the refraction index and the scattering anisotropy factor werealso considered. The whole experimental procedure fulfilled all the necessary requirements to provide optical-property values with lowerassociated uncertainties. The effective transport coefficient presented a similar spectral behavior for the two composites but completelydifferent for the zirconia ceramic. The results demonstrated that the scattering anisotropy exerted a clearly distinct impact on the opticalproperties of the zirconia ceramic compared with those of the dental-resin composites.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13056]

Full Text: PDF

Citation Details

Cite this article


J. Qin, and R. Lu, ”Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging,” Appl. Spectrosc. 61, 388–396 (2007).

L. L. Randeberg, and L. O. Svaasand, ”Simulated color: a diagnostic tool for skin lesions like port-wine stain,” Proc. SPIE 4244, 1–12 (2001).

G .J. Pearson, and K. H., Schuckert, ”The role of lasers in dentistry: Present and future,” Dent. Update 30, 70–74, 76 (2003).

Y. Shigetani, Y. Tate, A. Okamoto, M. Iwaku, and N. Abu-Bakr, ”A study of cavity preparation by Er:YAGlaser. Effects on the marginal leakage of composite resin restoration,” Dent. Mater. J. 21, 238– 249 (2002).

A. H. Jones, A. M. Diaz-Arnold, M. A. Vargas, and D. S. Cobb, ”Colorimetric assessment of laser and home bleaching techniques,” J. Esthet. Dent. 11, 87–94 (1999).

J. Kato, K. Moriya, J. A. Jayawardena, R. L. Wijeyeweera, and K. Awazu, ”Prevention of dental caries in partially erupted permanent teeth with a CO2 laser,” J. Clin. Laser Med. Surg 21, 369–374 (2003).

U. Keller, R. Hibst, W. Geurtsen, R. Schilke, D. Heidemann, B. Klaiber, and W. H. Raab, ”Erbium:YAG laser application in caries therapy. Evaluation of patient perception and acceptance,” J. Dent. 26, 649–656. (1998).

T. M. Ramos, T. M. Ramos-Oliveira, P. M. de Freitas, N. Jr. Azambuja, M. Esteves-Oliveira, N. Gutknecht, and E. C. de Paula, ”Effects of Er:YAG and Er,Cr:YSGG laser irradiation on the adhesion to eroded dentin,” Lasers Med. Sci. 28, 725–734 (2013).

D.A. Terry, W. Geller, O. Tric, M. J. Anderson, M. Tourville, and A. Kobashigawa, ”Anatomical form defines color: function, form and aesthetics,” Pract. Proced. Aesthet. Dent. 14, 59–67 (2002).

Y. K. Lee, ”Influence of scattering/absorption characteristics on the color of resin composites,” Dent. Mater. 23, 124–31 (2007).

Q. Liu, and E. Ruprecht, ”Radiative transfer model: matrix operator method,” Appl. Opt. 35, 4229–4237, (1996).

S. A. Prahl, ”The adding-doubling method” in Optical-thermal response to laser irradiated tissue, A. J. Welch and M. J. C. Ed. van Gemert,101-129 (New York, 1995).

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, ”Doubleintegrating- sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).

S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, ”Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt. 32, 559–568 (1993).

S. A. Prahl iad program (2012): index.html

L. Wang, S. Sharma, B. Aernouts, H. Ramon, and W. Saeys, ”Supercontinuum laser based double-integrating-sphere system for measuring optical properties of highly dense turbid mediain the 1300- 2350 nm region with high sensitivity,” Proc. SPIE 8427, 84273B (2012).

D. K. Sardar, B. G. Yust, F. Barrera, L. C. Minum, and A. T. C. Tsin, ”Optical absorption and scattering of bovine cornea, lens and retina in the visible region,” Lasers Med. Sci. 24, 839–847 (2009).

N. Honda, K. Ishii, A. Kimura, M. Sakai, and K. Awazu, ”Determination of optical property changes by laser treatments using inverse adding-doubling method,” Proc. SPIE 7175, 71750Q (2009).

K. Ishii, A. Kimura, and K. Awazu, ”Optical properties of tissues after laser treatments in the wavelength range of 350 - 1000 nm,” Proc. SPIE 6991, 69912F (2008).

D. K. Sardar, G. Y. Swanland, R. M. Yow, R. J. Thomas and A. T. C. Tsin, ”Optical properties of ocular tissues in the near infrared region,” Lasers Med. Sci. 22, 46–52 (2007).

Y. C. Chen, J. L. Ferracane, and S. A. Prahl, ”A pilot study of a simple photon migration model for predicting depth of cure in dental composite,” Dent. Mater. 21, 1075–1086 (2005).

K. Tahir, and C. Dainty, ”Experimental measurements of light scattering from samples with specified optical properties,” J. Opt. A: Pure Appl. Opt. 7, 207–214 (2005).

S. B. Mitra, D. Wu, and B. N. Holmes, ”An application of nanotechnology in advanced dental materials,” J. Am. Dent. Assoc. 134, 1382–1390 (2003).

I. Denrya and J. R. Kellyb, ”State of the art of zirconia for dental applications,” Dent. Mater. 24, 299–307 (2008).

C. Piconi, and G. Maccauro, ”Zirconia as a ceramic biomaterial,” Biomaterials 20, 1–25 (1999).

J. Chevalier and L. Gremillard, ”Ceramics for medical applications: A picture for the next 20 years,” J. Eur. Ceram. Soc. 29, 1245–1255 (2009).

A. Fernández-Oliveras, M. Rubiño, and M. M. Pérez, ”Scattering anisotropy measurements in dental tissues and biomaterials,” J. Europ. Opt. Soc. Rap. Public. 7, 12016 (2012).

A. Fernández-Oliveras, O. E. Pecho, M. Rubiño, and M. M. Pérez, ”Measurements of scattering anisotropy in dental tissue and zirconia ceramic,” Proc. SPIE. 8427, 84272C (2012).

A. Fernández-Oliveras, I. M. Carrasco, R. Ghinea, M. Rubiño, and M. M. P´nrez, ”Comparison between experimental and computational methods for scattering anisotropy coefficient determination in dental-resin composites,” Proc. SPIE. 8427, 84272B (2012).

A. Ishimaru, Wave propagation and scattering in random media (Academic Press, New York, 1978).

S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).

S. A. Prahl, Light transport in tissue, (PhD thesis, University of Texas, Austin, 1988).

L. C. Andrews, R. L. Philips, Laser beam propagation through random media (SPIE Optical Engineering Press, Bellingham, 2005).

E. Terán, E. R. Méndez, S. Enríquez, and R. Iglesias-Prieto, ”Multiple light scattering and absorption in reef-building corals,” Appl. Opt. 49, 5032–5042 (2010)

A. Kienle, and M. S. Patterson, ”Determination of the optical properties of turbid media from a single Monte Carlo simulation,” Phys. Med. Biol. 41, 2221–2227 (1996).

M. S. Patterson, B. C. Wilson, and D. R. Wyman, ”The propagation of optical radiation in tissue I. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1991).

G. M. Palmer, and N. Ramanujam, ”Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45, 1062–1071 (2006).

G. M. Palmer, C. Zhu, T. M., Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, ”Monte Carlo-based inverse model for calculating tissue optical properties. Part II: Application to breast cancer diagnosis,” Appl. Opt. 45, 1072–1078 (2006).

S. L. Jacques, ”Monte Carlo modeling of light transport in tissues” in Optical-thermal response to laser irradiated tissue, A. J. Welch and M. J. C. Ed. van Gemert, (Springer, New York, 1995).

S. A, Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, ”A Monte Carlo model of light propagation in tissue,” SPIE Institute Series IS 5, 102–111 (1989).

J. Hourdakis and A. Perris, ”A Monte Carlo estimation of tissue optical properties for use in laser dosimetry,” Phys. Med. Biol. 40, 351–364 (1995).

J. W. Pickering, C. J. M. Moes, H. J. C. M. Sterenborg, S. A. Prahl, and M. J. C. van Gemert, ”Two integrating spheres with an intervening scattering sample,” J. Opt. Soc. Am. A 9, 621–631 (1992).

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, ”Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203–1218 (1991).

International Organization for Standardization, Guide to the Expression of Uncertainty in Measurement., (International Organization for Standardization, Geneva, 1995).

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, ”Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J Biomed. Opt. 11, 064026-1-9 (2006).

D. K. Sardar, F. S. Salinas, J. J. Perez, and A. T. C. Tsin, ”Optical characterization of melanin,” J. Biomed. Opt. 6, 404–411 (2001).

D. K. Sardar, R. M. Yow, A. T. C. Tsin, and R. Sardar, ”Optical scattering, absorption and polarization of healthy and neovascularized human retinal tissues,” J. Biomed. Opt. 10, 0515011-1-8 (2005).

D. K. Sardar, and L.B. Levy, ”Optical Properties of Whole Blood,” Lasers Med. Sci. 13, 106–111 (1998).

A. Roggan, H. Albrecht, K. Dörschel, O. Minet, and G. Müller, ”Experimental set-up and Monte-Carlo model for the determination of optical properties in the wavelength range 330-1100 nm,” Proc. SPIE 2323, 21–36 (1995).

C. L. Yeh, Y. Miyagawa, and J. M. Powers, ”Optical properties of composites of selected shades,” J. Dent. Res. 61, 797–801 (1982).

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. Van Stryl, Handbook of Optics. Volume IV: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw Hill Professional, New York, 2009).

E. V. Koblova, A. N. Bashkatov, L. E. Dolotov, Y. P. Sinichkin, T. G. Kamenskikh, E. A. Genina, and V. V. Tuchin, ”Monte Carlo modeling of eye iris color,” Proc. SPIE 6535, 53521–53521 (2006).

L. L. Randeberg, and L. O. Svaasand, ”Simulated color: a diagnostic tool for skin lesions like port-wine stain,” Proc. SPIE 4244, 1–12 (2001).

L. O. Svaasand, L. T. Norvang, E. J. Fiskerstrand, E. K. S. Stopps, M. W. Berns, and J. S. Nelson, ”Tissue parameters determining the visual appearance of normal skin and port wine stains,” Lasers Med. Sci. 10, 55–65 (1995).