Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

Monte Carlo code for the study of the dynamic light field at the wavy atmosphere-ocean interface

M. Hieronymi


A radiative transfer model has been developed to study the solar radiation budget at the wave-deflected air-sea interface. The model is used to characterize fluctuations of the underwater light field, i.e. down- and upwelling irradiance, irradiance reflectance, and upwelling radiance just below the surface, subject to changing sun zenith angles and percentages of diffuse sky radiation to the total insolation. The focusing of sunlight is most effective under clear skies; the variability of downwelling irradiance is significantly smaller under overcast conditions. In general, maximum and deep-reaching fluctuations arise at high sun positions, but the behaviour is much more differentiated and exceptions are discussed. Furthermore, wave shadowing effects have been studied; these become increasingly important for low sun elevations. There are indications that the light transmission into water up to now is overestimated for solar zenith angles near the horizon.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13039]

Full Text: PDF

Citation Details

Cite this article


M. Darecki, D. Stramski, and M. Sokolski, ”Measurements of highfrequency light fluctuations induced by sea surface waves with an underwater porcupine radiometer system,” J. Geophys. Res. 116, C00H09 (2011).

V. P. Nikolayev, and V. G. Yakubenko, ”On the relationship between the statistical characteristics of the underwater light field and the wave state characteristics,” Izv. Atmos. Ocean. Phy. 14(1), 88–92 (1978).

J. Dera, and D. Stramski, ”Maximum effects of sunlight focusing under a wind-disturbed sea surface,” Oceanologia 23, 15–42 (1986).

D. Stramski, ”The effect of daylight diffuseness on the focusing of sunlight by sea surface waves,” Oceanologia 24, 11–27 (1986).

R. E. Walker, Marine light field statistics (Wiley Series in Pure and Applied Optics, New Jersey, 1994).

M. Stramska, and T. Dickey, ”Short-term variability of the underwater light field in the oligotrophic ocean in response to surface waves and clouds,” Deep-Sea Res. I 45, 1393–1410 (1998).

P. Gernez, and D. Antoine, ”Field characterization of wave-induced underwater light field fluctuations,” J. Geophys. Res. 114, C06025 (2009).

M. Hieronymi, and A. Macke, ”Spatiotemporal underwater light field fluctuations in the open ocean,” J. Europ. Opt. Soc. Rap. Public. 5, 10019S, 1–8 (2010).

P. Gege, and N. Pinnel, ”Sources of variance of downwelling irradiance in water,” Appl. Opt. 50(15), 2192–2203 (2011).

P. Gernez, D. Stramski, and M. Darecki, ”Vertical changes in the probability distribution of downward irradiance within the nearsurface ocean under sunny conditions,” J. Geophys. Res. 116, C00H07 (2011).

M. Hieronymi, and A. Macke, ”On the influence of wind and waves on underwater irradiance fluctuations,” Ocean Sci. 8, 455–471 (2012).

M. Hieronymi, and A. Macke, ”Variability of downwelling irradiance in the upper ocean in response to surface waves and diffuse sky radiation,” in Proceedings of 21st Ocean Optics Conference 2012, (Glasgow, 2012).

Z. Xu, X. Guo, L. Shen, and D. K. P. Yue, ”Radiative transfer in the ocean turbulence and its effect on the underwater light field,” J. Geophys. Res. 117, C00H18 (2012).

C. Cox, and W. Munk, ”Measurements of the roughness of the sea surface from photographs of the sun’s glitter,” J. Opt. Soc. Am. 44(11), 838–850 (1954).

C. D. Mobley, ”Light and water: Radiative transfer in natural waters,” (Academic Press, San Diego,1994).

F. Fell, and J. Fischer, ”Numerical simulation of the light field in the atmosphere-ocean system using the matrix-operator method,” J. Quant. Spectrosc. Ra. 69, 351–388 (2001).

K. I. Gjerstad, J. J. Stamnes, B. Hamre, J. K. Lotsberg, B. Yan, and K. Stamnes, ”Monte Carlo and discrete-ordinate simulations of irradiances in the coupled atmosphere-ocean system,” Appl. Opt. 42(15), 2609–2622 (2003).

A. Rozanov, V. Rozanov, M. Buchwitz, A. Kokhanovsky, and J. P. Burrows, ”SCIATRAN 2.0 – A new radiative transfer model for geophysical applications in the 175–2400 nm spectral region,” Adv. Space. Res. 36(5), 1015–1019 (2005).

C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, et al., ”Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32(36), 7484– 7504 (1993).

C. D. Mobley, ”How well does Hydrolight simulate wind-blown sea surfaces?,” Hydrolight Technical Note 1, http://www.sequoiasci. com/products/hl-radiative.cmsx (2002).

H. R. Gordon, ”Normalized water-leaving radiance: revisiting the influence of surface roughness,” Appl. Opt. 44(2), 241–248 (2005).

D. D’Alimonte, G. Zibordi, T. Kajiyama, and J. C. Cunha, ”Monte Carlo code for high spatial resolution ocean color estimation,” Appl. Opt. 49(26), 4936–4950 (2010).

J. R. V. Zaneveld, E. Boss, and P. A. Hwang, ”The influence of coherent waves on the remotely sensed reflectance,” Opt. Express 9(6), 260–266 (2001).

Y. You, D. Stramski, M. Darecki, and G. W. Kattawar, ”Modeling of wave-induced irradiance fluctuations at near-surface depths in the ocean: a comparison with measurements,” Appl. Opt. 49(6), 1041–1053 (2010).

S. Kay, J. Hedley, S. Lavender, and A. Nimmo-Smith, ”Light transfer at the ocean surface modeled using high resolution sea surface realizations,” Opt. Express 19(7), 6493–6504 (2011).

M. Hieronymi, A. Macke, and O. Zielinski, ”Modeling of waveinduced irradiance variability in the upper ocean mixed layer,” Ocean Sci. 8, 103–120 (2012).

M. Hieronymi, and A. Macke, ”Wave-induced irradiance variability in the upper ocean from modeling and observations,” AIP Conf. Proc. 1531, 915–918 (2013).

M. Wang, K. D. Knobelspiesse, and C. R. McClain, ”Study of the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with the ocean color products,” J. Geophys. Res. 110, D10S06 (2005).

T. J. Petzold, ”Volume scattering functions for selected ocean waters,” SIO Ref. 72-78 (Scripps Institution of Oceanography, San Diego, 1972).

R. W. Preisendorfer, and C. D. Mobley, ”Albedos and glitter patterns of a wind-roughened sea surface,” J. Phys. Oceanogr. 16(7), 1293–1316 (1986).

G. Zibordi, D. D’Alimonte, and J. F. Berthon, ”An evaluation of depth resolution requirements for optical profiling in coastal waters,” J. Atmos. Ocean. Tech. 21(7), 1059–1073 (2004).

D. Stramski, and J. Tegowski, ”Effects of intermitted entrainment of air bubbles by breaking wind waves on ocean reflectance and underwater light field,” J. Geophys. Res. 106, 31345–31360 (2001).

S. Jiang, K. Stamnes, W. Li, and B. Hamre, ”Enhanced solar irradiance across the atmosphere-sea ice interface: A quantitative numerical study,” Appl. Opt. 44(13), 2613–2625 (2005).

C. Moore, A. Barnard, P. Fietzek, M. R. Lewis, H. M. Sosik, S. White, and O. Zielinski, ”Optical tools for ocean monitoring and research,” Ocean Sci. 5, 661–684 (2009).