Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

Passive scene imaging of absorbing gases by narrowband dielectric filter modulation

D. M. Benton

Abstract


This paper examines a method for locating within a scene a distribution of an absorbing gas using a passive imaging technique. An oscillatory modulation of the angle of a narrowband dielectric filter located in front of a camera imaging a scene, gives rise to an intensity modulation that differs in regions occupied by the absorbing gas. A preliminary low cost system has been constructed from readily available components which demonstrates how the location of gas within a scene can be implemented. Modelling of the system has been carried out, especially highlighting the transmission effects of the dielectric filter upon different regions of the image.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13008]

Full Text: PDF

Citation Details


Cite this article

References


U. Platt, ”Modern methods of the measurement of atmospheric trace gases,” Phys. Chem. Chem. Phys. 1, 5409–5415 (1999).

W. Demtröder, Laser spectroscopy: basic concepts and instrumentation (Springer, Berlin, 2003).

R. T. Ku, E. D. Hinkley, and J. O. Sample, ”Long-Path Monitoring of Atmospheric Carbon Monoxide with a Tunable Diode Laser System,” Appl. Optics 14(4), 854–861 (1975).

M. W. Sigrist, Air monitoring by spectroscopic techniques (Wiley, New Jersey, 1994).

P. M. Hamilton, R. H. Varey, and M. M. Millan, ”Remote sensing of sulphur dioxide,” Atmos. Eviron. 12, 127–133 (1978).

T. Elias, A. J. Sutton, C. Oppenheimer, K. A. Horton, H. Garbeil, V. Tsanev, A. J. S. McGonigle, and G. Williams-Jones, ”Comparison of COSPEC and two miniature ultraviolet spectrometer systems for SO2 measurements using scattered sunlight,” B. Volcanol. 68, 313–322 (2006).

B. Galle, C. Oppenheimer, A. Geyer, A. J. S McGonigle, M. Edmonds, and L. Horrocks, ”A miniaturized ultraviolet spectrometerfor remote sensing of SO2 fluxes: a new tool for volcano surveillance,” J. Volcanol. Geoth. Res. 119, 241–254 (2002).

J. M. Mooney, V. E. Vickers, M. An, and A. K. Brodzik, ”High throughput hyperspectral infrared camera,” J. Opt. Soc. Am. A 14, 2951–2961 (1997).

A. Wagadarikar, N. Pitsianis, X. Sun, and D. Brady, ”Video rate spectral imaging using a coded aperture snapshot spectral imager,” Opt. Express 17(8), 6368–6388 (2009).

A. Wagadarikar, N. Pitsianis, X. Sun, and D. Brady, ”Spectral image estimation for coded aperture snapshot spectral imagers,” Proc. SPIE 7076, 795545 (2008).

M. Pujadas, J. Plaza, J. Teres, B. Artinao, and M. Millan, ”Passive remote sensing of nitrogen dioxide as a tool for tracking air pollution in Urban areas: the Madrid urban plume, a case of study,” Atmos. Environ. 34(19), 3041–3056 (2000).

V. S. Davydov, and A. V. Afonin, ”Developing video spectroradiometer–gas-viewers for determining the spatial distribution of anthropogenic gases in the near-earth atmosphere and the results of a full-scale experiment,” J. Opt. Technol. 74(2), 100–106 (2007).

A. V. Afonin, N. M. Drichko, and I. N. Sivyakov, ”Wide-angle interference-polarization filter of a video spectroradiometer-gas viewer for recording nitrogen dioxide,” J. Opt. Technol. 71, 776–779 (2004).

D. Benton, ”Technique for passive scene imaging of gas and vapor plumes using transmission-waveband modulation,” Opt. Eng. 51(5), 050501 (2012).

T. J. Kentischer, W. Schmidt, M. Sigwarth, and M. v. Uexkull, ”TESOS, a double Fabry-Perot instrument for solar spectroscopy,” Astron. Astrophys. 340, 569–578 (1998).

G. Joncas, and J.-R. Roy, ”A fabry Perot camera for the study of galactic nebulae: instrumentation and reduction of digitized interferograms” Publ. Astron. Soc. Pac. 96, 263–270 (1984).

S. A. Pollack, ”Angular Dependence of Transmission Characteristics of Interference Filters and Application to a Tenable Fluorometer,” Appl. Optics 5, 1749 (1966).

J. R.Barry, and J. M. Kahn, ”Link design for non-directed Wireless Infrared Communications,” Appl. Optics 34(19), 3764–3776 (1995).

A. C. Vandaele, C. Hermans, P. C. Simon, M. Roozendael, J. M. Guilmot, M. Carleer, and R. Colin, ”Fourier transform measurement of NO2 absorption cross-section in the visible range at room temperature,” J. Atmos. Chem. 25, 289–305 (1996).