Journal of the European Optical Society - Rapid publications, Vol 6 (2011)

Contrast transfer characteristics of the light sword optical element designed for presbyopia compensation

K. Petelczyc, S. Bará, A. Ciro López, Z. Jaroszewicz, K. Kakarenko, A. Kolodziejczyk, M. Sypek


The paper discusses the abilities of the light sword optical element (LSOE) for presbyopia compensation. The imaging properties are analyzed by means of the modulation transfer functions and output images of the star resolution test. All numerical calculations are performed assuming an optical set-up simulating the presbyopic human eye and based on the Gullstrand model. In order to have a meaningful comparison we expand our study and present adequate analysis for other elements potentially useful in ophthalmology as reading glasses, bifocal lenses and axicons. According to the obtained results the LSOE can successfully realize vision with an extended depth of field. The element makes possible the compensation of an assumed defocus up to 4 dioptres. The output images formed by the LSOE are well recognizable and have acceptable qualities for near as well as far object distances.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2011.11053]

Full Text: PDF

Citation Details

Cite this article


P. Artal, and J. Tabernero, "Optics of human eye: 400 years of exploration from Galileo's time" Appl. Opt. 49, D123-D130 (2010).

B. K. Pierscionek, "What we know and understand about presbyopia" Clin. Exp. Optom. 76, 83-90 (1993).

A. Glasser, M. A. Croft, and P. L. Kaufman, "Aging of the Human Crystalline Lens and Presbyopia" Int. Ophthalmol. Clin. 41, 1-15 (2001).

Z. Zalevsky, "Extended depth of focus imaging: a review" SPIE Reviews 1, 018001 1-11 (2010).

A. Kolodziejczyk, S. Bara, Z. Jaroszewicz, and M. Sypek, "The light sword optical element - a new diffraction structure with extended depth of focus" J. Mod. Opt. 37, 1283-1286 (1990).

K. Petelczyc, J. Ares Garcia, S. Bara, Z. Jaroszewicz, K. Kakarenko, A. Kolodziejczyk, and M. Sypek, "Strehl ratios characterizing optical elements designed for presbyopia compensation" Opt. Express 19, 8693-8699 (2011).

J. D. Marsack, L. N. Thibos, and R. A. Applegate, "Metrics of optical quality derived from wave aberrations predict visual performance" J. Vision 4, 322-328 (2004).

R. D. Iskander, "Computational aspects of the visual Strehl ratio" Optometry Vision Sci. 83, 57-59 (2006).

G.-M. Dai, "Optical surface optimization for the correction of presbyopia" Appl. Opt. 45, 4184-4195 (2006).

A. Valberg, Light Vision Color (John Wiley & Sons, New York, 2005).

H. Gross, F. Blechinger, and B. Achtner, Handbook of Optical Systems, Vol. 4, Survey of Optical Instruments (Wiley-VCH, Weinheim, 2008).

M. Sypek, "Light propagation in the Fresnel region. New numerical approach" Opt. Commun. 116, 43-48 (1995).

M. Sypek, C. Prokopowicz, and M. Gorecki, "Image multiplying and high-frequency oscillations effects in the Fresnel region light propagation simulation" Opt. Eng. 42, 3158-3164 (2003).

J. A. Davison, and M. J. Simpson, "History and development of the apodized diffractive intraocular lens" J. Cataract. Refr. Surg. 32, 849-858 (2006).

B. Z_ elichowska, M. Rekas, A. Stankiewicz, A. Cerviño, R. Montes- Mico, "Apodized diffractive versus refractive multifocal intraocular lenses: Optical and visual evaluation" J. Cataract. Refr. Surg. 34, 2036-2042 (2008).

P. J. Valle, J. E. Oti, V. F. Canales, and M. P. Cagigal, "Visual axial PSF of diffractive trifocal lenses" Opt. Express 13, 2782-2792 (2005).

J. Sochacki, A. Kolodziejczyk, Z. Jaroszewicz, and S. Bara, "Nonparaxial design of generalized axicons" Appl. Opt. 31, 5326-5330 (1992).

W. Chi, and N. George, "Electronic imaging using a logarithmic asphere" Opt. Lett. 26, 875-877 (2001).

J. Ares, R. Flores, S. Bara, and Z. Jaroszewicz, "Presbyopia compensation with a quartic axicon" Optometry Vision Sci. 82, 1071-1078 (2005).

J. H. Roffman, T. R. Poling, and M. Guillon, "Pupil-tuned multifocal ophthalmic lens" US Patent 5,448,312 (1995).

G. Mikula, Z. Jaroszewicz, A. Kolodziejczyk, K. Petelczyc, and M. Sypek, "Imaging with extended focal depth by means of lenses with radial and angular modulation" Opt. Express 15, 9184-9193 (2007).

J. Ares Garcia, S. Bará, M. Gomez García, Z. Jaroszewicz, A. Kolodziejczyk, and K. Petelczyc, "Imaging with extended focal depth by means of the refractive light sword optical element" Opt. Express 16, 18371-18378 (2008).

G. Mikula, A. Kolodziejczyk, M. Makowski, C. Prokopowicz, and M. Sypek, "Diffractive elements for imaging with extended depth of focus" Opt. Eng. 44, 058001 1-7 (2005).

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, Greenwood Village, 2005).

K. Petelczyc, J. Ares Garcia, S. Bará, Z. Jaroszewicz, A. Kolodziejczyk, and M. Sypek, "Presbyopia compensation with a light sword optical element of a variable diameter" Phot. Lett. Poland 1, 55-57 (2009).

P. Artal, L. Chen, E. J. Fernandez, B. Singer, S. Manzanera, and D. R. Williams, "Neural compensation for the eye's optical aberrations" J. Vision 4, 281-287 (2004).