Journal of the European Optical Society - Rapid publications, Vol 10 (2015)

Near-infrared light absorption and scattering based on a mono-layer of gold nanoparticles

R. Soltanmoradi, Q. Wang, M. Qiu, S. Popov, M. Yan


We report fabrication and characterization of large-area ultrathin near-infrared light absorbers and scatterers based on a mono-layer of gold nanoparticles laying on top of a dielectric spacer and an aluminum reflector. The nanoparticles are formed through thermal annealing of an evaporated continuous gold film. Through optimization of initial gold-film thickness, spacer thickness, as well as annealing temperature we obtained samples that exhibit very low (~2%) broadband specular reflectance at near-infrared (NIR) wavelength range. By considering also diffuse reflection, we identify that the low specular reflectance can be due to either relatively high light absorption (~70%) or high light scattering (over 60%), with the latter achieved for samples having relatively sparse gold nanoparticles. Both strong absorption and scattering of NIR light are not inherent properties of the bulk materials used for fabricating the samples. Such composite optical surfaces can potentially be integrated to solar-energy harvesting and LED devices.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2015.15031]

Full Text: PDF

Citation Details

Cite this article


K. Aydin, V. E. Ferry, R.M. Briggs, and H. A. Atwater, ”Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 1–7 (2011).

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, et al., ”Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, et al., ”Controlled-reflectance surfaces with filmcoupled colloidal nanoantennas,” Nature 492, 86–89 (2012).

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, ”Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, ”High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).

X. Liu, T. Tyler, T. Starr, A. F. Starr, N.M. Jokerst, and W.J. Padilla, ”Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, ”Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106, 0411105 (2015).

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, ”A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, ”Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).

C. M. Watts, X. Liu, and W. J. Padilla, ”Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).

M. K. Hedayati, F. Faupel, and M. Elbahri, ”Review of plasmonic nano composite metamaterial absorber,” Materials 7, 1221–1248 (2014).

Y. Shi, X. Chen, F. Lou, Y. Chen, M. Yan, L. Wosinski, and M. Qiu, ”All-optical switching of silicon disk resonator based on photothermal effect in metal-insulator-metal absorber,” Opt. Lett. 39, 4431–4434 (2014).

J. A. Schuller, T. Taubner, M. L. Brongersma, ”Optical antenna thermal emitters,” Nat. Photon. 3, 658–661 (2009).

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, ”Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).

Z. Ruan, and S. Fan, ”Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105, 013901 (2010).

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, ”Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).

C. Wu, B. Neuner III, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, ”Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84, 075102 (2011).

R. Walter, A. Tittl, A. Berrier, F. Sterl, T. Weiss, and H. Giessen, ”Large-area low-cost tunable plasmonic perfect absorber in the near infrared by colloidal etching lithography,” Adv. Opt. Mater. 3, 201400545 (2015).

M. Yan, J. Dai, and M. Qiu, ”Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles,” J. Opt. 16, 025002 (2014).

W. R. Holland, and D. Hall, ”Frequency shifts of an electricdipole resonance near a conducting surface,” Phys. Rev. Lett. 52, 1041–1044 (1984).

J. Cesario, R. Quidant, G. Badenes, and S. Enoch, ”Electromagnetic coupling between a metal nanoparticle grating and a metallic surface,” Opt. Lett. 30, 3404–3406 (2005).

G. Lévêque, and O. J. F. Martin, ”Optical interactions in a plasmonic particle coupled to a metallic film,” Opt. Express 14, 9971–9981 (2006).

M. Yan, ”Metal-insulator-metal light absorber: a continuous structure,” J. Opt. 15, 025006 (2013).

P. B. Johnson, and R. W. Christy, ”Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

E. D. Palik (ed.), Handbook of optical constants of solids (New York, Academic Press, 1985).

A. D. Raki´c, ”Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum,” Appl. Optics 34, 4755–4767 (1995).