Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

Comparison of aberrations after standard and customized refractive surgery

L. Fang, X. He, Y. Wang

Abstract


To detect possible differences in residual wavefront aberrations between standard and customized laser refractive surgery based onmathematical modeling, the residual optical aberrations after conventional and customized laser refractive surgery were compared accordingto the ablation profile with transition zone. The results indicated that ablation profile has a significant impact on the residual aberrations.The amount of residual aberrations for conventional correction is higher than that for customized correction. Additionally, the residualaberrations for high myopia eyes are markedly larger than those for moderate myopia eyes. For a 5 mm pupil, the main residual aberrationterm is coma and yet it is spherical aberration for a 7 mm pupil. When the pupil diameter is the same as optical zone or greater, themagnitudes of residual aberrations is obviously larger than that for a smaller pupil. In addition, the magnitudes of the residual fifth orsixth order aberrations are relatively large, especially secondary coma in a 6 mm pupil and secondary spherical aberration in a 7 mm pupil.Therefore, the customized ablation profile may be superior to the conventional correction even though the transition zone and treatmentdecentration are taken into account. However, the customized ablation profile will still induce significant amount of residual aberrations.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13061]

Full Text: PDF

Citation Details


Cite this article

References


F. Wu, Y. Yang, and P. J. Dougherty, ”Contralateral comparison of wavefront-guided LASIK surgery with iris recognition versus without iris recognition using the MEL80 Excimer laser system,” Clin. Exp. Optom. 92, 320–327 (2009).

S. C. Schallhorn, and J. A. Venter, ”One-month outcomes of wavefront-guided LASIK for low to moderate myopia with the VISX STAR S4 laser in 32,569 eyes,” J. Refract. Surg. 25, S634–S641 (2009).

C. X. Du, Y. Shen, and Y. Wang, ”Comparison of high order aberration after conventional and customized ablation in myopic LASIK in different eyes of the same patient,” J. Zhejiang. Univ. Sci. B 8, 177–180 (2007).

S. C. Schallhorn, D. J. Tanzer, S. E. Kaupp, M. Brown and S. E. Malady, ”Comparison of night driving performance after wavefrontguided and conventional LASIK for moderate myopia,” Ophthalmology 116, 702–709 (2009).

S. T. Awwad, K. K. Haithcock, D. Oral, R. W. Bowman, H. D Cavanagh and J. P McCulley, ”A comparison of induced astigmatism in conventional and wavefront-guided myopic LASIK using LADARVision4000 and VISX S4 platforms,” J. Refract. Surg. 21, S792– S798 (2005).

J. Zhang, Y. H. Zhou, N. L. Wang, and R. Li, ”Comparison of visual performance between conventional LASIK and wavefront-guided LASIK with iris-registration,” Chin Med J (Engl) 121, 137–142 (2008).

L. Racine, L. Wang, and D. D. Koch, ”Size of corneal topographic effective optical zone: comparison of standard and customized myopic laser in situ keratomileusis,” Am. J. Ophthalmol. 142, 227– 232 (2006).

L. Wang, and D. D. Koch, ”Residual higher-order aberrations caused by clinically measured cyclotorsional misalignment or decentration during wavefront-guided excimer laser corneal ablation,” J. Cataract. Refract. Surg. 34, 2057–2062 (2008).

P. Padmanabhan, M. Mrochen, D. Viswanathan, and S. Basuthkar, ”Wavefront aberrations in eyes with decentered ablations,” J. Cataract Refract. Surg. 35, 695–702 (2009).

S. MacRae, ”Excimer ablation design and elliptical transition zones,” J. Cataract Refract. Surg. 25, 1191–1197 (1999).

M. S. Macsai, K. Stubbe, A. P. Beck, and Z. B. Ravage, ”Effect of expanding the treatment zone of the Nidek EC-5000 laser on laser in situ keratomileusis outcomes,” J. Cataract Refract. Surg. 30, 2336– 2343 (2004).

M. A. el Danasoury, ”Prospective bilateral study of night glare after laser in situ keratomileusis with single zone and transition zone ablation,” J. Refract. Surg. 14, 512–516 (1998).

M. C. Arbelaez, C. Vidal, B. A. Jabri, and S. Arba Mosquera, ”LASIK for myopia with Aspheric ‘aberration neutral’ ablations using the ESIRIS laser system,” J. Refract. Surg. 25, 991–999 (2009).

R. A. Applegate, W. J. Donnelly, J. D. Marsack, and D. E. Koenig, ”Three-dimensional relationship between high-order root-meansquare wavefront error, pupil diameter, and aging,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 24, 578–587 (2007).

J. Bühren, G. Yoon, S. MacRae, and K. Huxlin, ”Contribution of optical zone decentration and pupil dilation on the change of optical quality after myopic photorefractive keratectomy in a cat model,” J. Refract. Surg. 26, 183–190 (2010).

J. Bühren, C. Kuhne, and T. Kohnen, ”Influence of pupil and optical zone diameter on higher-order aberrations after wavefront-guided myopic LASIK,” J. Cataract Refract. Surg. 31, 2272–2280 (2005).

J. Liang, B. Grimm, S. Goelz, and J. F. Bille, ”Objective measurement of wave aberrations of the human eye with the use of a Hartmann- Shack wave-front sensor,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 11, 1949–1957 (1994).

L. Fang, X. He, and F. Chen, ”Theoretical analysis of wavefront aberration from treatment decentration with oblique incidence after conventional laser refractive surgery,” Opt. Express 18, 22418– 22431 (2010).

Y. Zhang, W. Liao, and J. Shen, ”Blend zone model for excimer laser refractive surgery,” Opt. Precision Eng. 12, 406–410 (2004).

L. Fang, Y. Wang, and F. Chen, ”Influence of Stiles-Crawford effect on visual performance after laser in situ keratomileusis,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 29, 1482–1488 (2012).

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, ”Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4, 329–351 (2004).

J. D. Marsack, L. N. Thibos, and R. A. Applegate, ”Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vis. 4, 322–328 (2004).

L. Wu, X. Zhou, R. Chu, and Q. Wang, ”Photoablation centration on the corneal optical center in myopic LASIK using AOV excimer laser,” Eur. J. Ophthalmol. 19, 923–929 (2009).

S. B. Lee, B. S. Hwang, and J. Lee, ”Effects of decentration of photorefractive keratectomy on the induction of higher order wavefront aberrations,” J. Refract. Surg. 26, 731–743 (2010).

J. Bühren, G. Yoon, S. Kenner, S. MacRae, and K. Huxlin, ”The effect of optical zone decentration on lower- and higher-order aberrations after photorefractive keratectomy in a cat model,” Invest. Ophthalmol. Vis. Sci. 48, 5806–5814 (2007).

J. Porter, G. Yoon, D. Lozano, J. Wolfing, R. Tumbar, S. MacRae, I. G. Cox, and D. R. Williams, ”Aberrations induced in wavefront-guided laser refractive surgery due to shifts between natural and dilated pupil center locations,” J. Cataract Refract. Surg. 32, 21–32 (2006).

J. L. Febbraro, D. D. Koch, H. N. Khan, A. Saad, and D. Gatinel, ”Detection of static cyclotorsion and compensation for dynamic cyclotorsion in laser in situ keratomileusis,” J. Cataract Refract. Surg. 36, 1718–1723 (2010).

G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, ”Optical performance of 3 intraocular lens designs in the presence of decentration,” J. Cataract Refract. Surg. 31, 574–585 (2005).

V. F. Canales, and M. P. Cagigal, ”Monte Carlo simulation of irradiance distribution on the retina after refractive surgery,” J. Refract. Surg. 20, 384–390 (2004).

A. B. Watson, and A. J. Ahumada, Jr., ”Predicting visual acuity from wavefront aberrations,” J. Vis. 8, 17, 1–19 (2008).

P. S. Binder, and J. Rosenshein, ”Retrospective comparison of 3 laser platforms to correct myopic spheres and spherocylinders using conventional and wavefront-guided treatments,” J. Cataract Refract. Surg. 33, 1158–1176 (2007).

G. M. Dai, ”Scaling Zernike expansion coefficients to smaller pupil sizes: a simpler formula,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 23, 539–543 (2006).

M. J. Endl, C. E. Martinez, S. D. Klyce, M. B. McDonald, S. J. Coorpender, R. A. Applegate and H. C. Howland, ”Effect of larger ablation zone and transition zone on corneal optical aberrations after photorefractive keratectomy,” Arch. Ophthalmol. 119, 1159–1164 (2001).

M. Mrochen, M. Kaemmerer, P. Mierdel, and T. Seiler, ”Increased higher-order optical aberrations after laser refractive surgery: a problem of subclinical decentration,” J. Cataract Refract. Surg. 27, 362–369 (2001).

Y. Wang, K. X. Zhao, J. C. He, Y. Jin, and T. Zuo, ”Ocular higher-order aberrations features analysis after corneal refractive surgery,” Chin. Med. J. (Engl) 120, 269–273 (2007).

P. Vinciguerra, M. Azzolini, P. Airaghi, P. Radice, and V. de Molfetta, ”Effect of decreasing surface and interface irregularities after photorefractive keratectomy and laser in situ keratomileusis on optical and functional outcomes,” J. Refract Surg. 14, S199–S203 (1998).

P. Vinciguerra, F. I. Camesasca, and I. M. Torres, ”Transition zone design and smoothing in custom laser-assisted subepithelial keratectomy,” J. Cataract Refract. Surg. 31, 39–47 (2005).