Journal of the European Optical Society - Rapid publications, Vol 7 (2012)

Tuning the focal point of a plasmonic lens by nematic liquid crystal

M. Bahramipanah, M. S. Abrishamian, S. A. Mirtaheri


A theoretical and numerical investigation of tunable plasmonic nano-optic lens on the basis of liquid crystal are proposed as a new method of active modulating the output beam. The focal length can be controlled easily by exposing plasmonic nano-optic lens to constant external electric field. The physical principle of this phenomenon is evaluated from the phase of Fabry-Perot (F-P) resonance in slits and electro-optical effect of liquid crystal. Our numerical simulations reveal that large tuning range of the focal length up to 725 nm can be achieved. The results in this article provide a potential way to realize tunable plasmonic lens, which can be applied as an efficient element in ultrahigh nano-scale integrated photonic circuits for miniaturization and tuning purposes.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2012.12053]

Full Text: PDF

Citation Details

Cite this article


W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, "Planar Lenses Based on Nanoscale Slit Arrays in a Metallic Film" , Nano Lett. 9 (1), 235 (2009).

Z. Sun, and H. K. Kim, "Refractive transmission of light and beam shaping with metallic nano-optic lenses," Appl. Phys. Lett. 85, 642-644 (2004).

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, "Beam manipulating by metallic nano-slits with variant widths," Opt. Express 13, 6815-6820 (2005).

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, "Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing," Nano Lett. 10 (5), 1936-1940 (2010).

G. G. Zheng, and X. Y. Li, "Optical beam manipulation through two metal subwavelength slits surrounded by dielectric surface gratings," J. Opt. A - Pure Appl. Opt. 11 (7), 075002 (2009).

E. Ozbay, "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions," Science 311, 189-193 (2006).

D. D. Ceglia, M. A. Vincenti, and M. Scalora, "Wideband plasmonic beam steering in metal gratings," Opt. Lett. 37, 271-273 (2012).

C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, "Beam manipulating by metallic nano-optic lens containing nonlinear media," Opt. Express 15, 9541-9546 (2007).

M. A. Vincenti, A. D'Orazio, M. Buncick, N. Akozbek, M. J. Bloemer, and M. Scalora, "Beam steering from resonant subwavelength slits filled with a nonlinear material," JOSA B 26, 301-307 (2009).

C. C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, I. Hartl, and T. R. Schibli, "Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electrooptic modulator," Opt. Lett. 37, 3084-3086 (2012).

Y. Shao, W. Qin, H. Liu, J. Qu, X. Peng, H. Niu, and B. Z. Gao, "Ultrafast, large-field multiphoton microscopy based on an acoustooptic deflector and a spatial light modulator," Opt. Lett. 37, 2532-2534 (2012).

P. Li, T. Sasaki, L.F. Pan, and K. Hane, "Comb-drive tracking and focusing lens actuators integrated on a silicon-on-insulator wafer," Opt. Express 20, 627-634 (2012).

X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, "Modeling and design of an optimized liquid-crystal optical phased array," J. Appl. Phys. 98, 073101-073101-8 (2005).

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, "Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal," Nano Lett. 8 (1), 281 (2008).

V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, "Light- Driven Plasmonic Switches Based on Au Nanodisk Arrays and Photoresponsive Liquid Crystals," Adv. Mater. 20, 3528-3532 (2008).

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, "Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal," Appl. Phys. Lett. 91, 043101 (2007).

A. C. Tasolamprou, D. C. Zografopoulos, and E. E. Kriezis, "Liquid crystal-based dielectric loaded surface plasmon polariton optical switches," J. Appl. Phys. 110, 093102-1-9 (2011).

M. Bahramipanah, M. S. Abrishamian, and S. A. Mirtaheri, "Tunable anisotropic photonic crystal channel-drop filter," J. Opt. 13, 015103-1-8 (2011).

M. Dridi, and A. Vial, "FDTD Modeling of Gold Nanoparticles in a Nematic Liquid Crystal: Quantitative and Qualitative Analysis of the Spectral Tunability," J. Phys. Chem. C 114, 9541-9545 (2010).

M. Bahramipanah, S. A. Mirtaheri, and M. S. Abrishamian, "Electrical beam steering with metal-anisotropic-metal structure," Opt. Lett. 37 (4), 1-3 (2012).

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, "Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix," Nano Lett. 5, 1978-1981 (2005).

L. Dou, and A. R. Sebak, "3D FDTD method for arbitrary anisotropic materials" , Microw. Opt. Techn. Let. 48, 2083-2090 (2006).

W. H. P. Pernice, F. P. Payne, and D. F. G. Gallagher, "An FDTD method for the simulation of dispersive metallic structures," Opt. Quant. Electron. 38, 843-856 (2006).

A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, Norwood (MA), 2005).

J. Tao, X. G. Huang, X. Lin, Q. Zhang, and X. Jin, "A narrowband subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure," Opt. Express 17, 13989-13994 (2009).