Journal of the European Optical Society - Rapid publications, Vol 7 (2012)

All-optical modulation in a CMOS-compatible amorphous silicon-based device

S. Rao, C. D'Addio, F. G. Della Corte


Active silicon photonic devices, which dynamically control the flow of light, have received significant attention for their use in on-chip optical networks. High-speed active silicon photonic modulators and switches rely on the plasma dispersion effect, where a change in carrier concentration causes a variation in the refractive index. The necessary electron and hole concentration change can be introduced either by optical pumping, or by direct electrical injection and depletion. We demonstrate a fast photoinduced absorption effect in low loss hydrogenated amorphous silicon (a-Si:H) waveguides deposited at a temperature as low as 190°C. Significant modulation (M% ~90%) occurs with a 1 mm-long device. We attribute the enhanced modulation to the significantly larger free-carrier absorption effect of a-Si:H. The complementary metal-oxide semiconductor (CMOS) compatible technology of a-Si:H could be considered as a promising candidate to enable an easy back-end integration with standard microelectronics processes.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2012.12023]

Full Text: PDF

Citation Details

Cite this article


J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, "Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer," Advances in Optical Technologies 2008, 1-15 (2008).

G. Cocorullo, F.G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, "Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics," IEEE Journal of Selected Topics in Quantum Electron 4, 997-1001 (1998).

A. Harke, M. Krause, and J. Mueller, "Low-loss single mode amorphous silicon waveguides," Electronics Lett. 41, 1377-1378 (2005).

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, "Low-loss amorphous siliconon- insulator technology for photonic integrated circuitry," Opt. Comm. 282, 1767-1770 (2009).

K. Narayanan, A. W. Elshaari, and S. F. Preble, "Broadband alloptical modulation in hydrogenated-amorphous silicon waveguides," Opt. Express 18, 10 (2010).

F. G. Della Corte, S. Rao, M. A. Nigro, F. Suriano, and C. Summonte, "Electro-optically induced absorption in a-Si:H/a-SiCN waveguiding multistacks," Opt. Express 16, 7540-7550 (2008).

S. Rao, F. G. Della Corte, C. Summonte, and F. Suriano, "Electrooptical modulating device based on a CMOS-compatible a-Si:H/a- SiCN multistack waveguide," IEEE J. Sel. Top. Quantum Electron. 16(1), 173-178 (2010).

F. G. Della Corte, S. Rao, G. Coppola, and C. Summonte, "Electrooptical modulation at 1550 nm in an as-deposited hydrogenated amorphous silicon p-i-n waveguiding device," Opt. Express 19(4), 2941-2951 (2011).

RSoft Photonics CAD Suite version 5.1.7, by RSOFT Inc.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431(7012), 1081-1084 (2004).

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchild, and W. L. Nighan Jr., "The properties of free carriers in amorphous silicon," J. Non-Cryst. Sol. 141, 76-87 (1992).