Journal of the European Optical Society - Rapid publications, Vol 4 (2009)

Investigations on the Bragg grating recording in all-silica, standard and microstructured optical fibers using 248 nm 5 ps, laser radiation

S. Pissadakis, M. Livitziis, G. D. Tsibidis


The fabrication of Bragg reflectors in hydrogenated, all-silica, fluorine cladding depressed and microstructured optical fibers using 248 nm, 5 ps laser radiation, is investigated here. Comparative Bragg grating recordings are performed in both optical fibers, for investigating effects related to the scattering induced by the capillary micro-structure, to the photosensitivity and index engineering yield. Further, finite difference time domain method is employed for simulating the scattering from the above capillary structure and the nominal intensity reaching the fiber core for side-illumination. The maximum modulated refractive index changes inscribed in the standard, step-index fiber were of the order of 8.3x10-5, while the maximum refractive index changes inscribed in one of the microstructured optical fibers was 32% lower and 5.7x10-5, for nominal pulse intensities of 20 GW/cm2 and modest accumulated energy densities.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2009.09049]

Full Text: PDF

Citation Details

Cite this article


T. A. Birks, J. C. Knight, and P. S. J. Russell, "Endlessly single-mode photonic crystal fiber" Opt. Lett. 22, 961-963 (1997).

J. Albert, M. Fokine, and W. Margulis, "Grating formation in pure silica-core fibers" Opt. Lett. 27, 809-811 (2002).

S. J. Mihailov, D. Grobnic, H. Ding, C. W. Smelser, and J. Broeng, "Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers" IEEE Photonic. Tech. L. 18, 1837-1839 (2006).

M. Livitziis, and S. Pissadakis, "Bragg grating recording in lowdefect optical fibers using ultraviolet femtosecond radiation and a double-phase mask interferometer" Opt. Lett. 33, 1449-1451 (2008).

K. Zagorulko, P. Kryukov, Y. Larionov, A. Rybaltovsky, E. Dianov, S. Chekalin, Y. Matveets, and V. Kompanets, "Fabrication of fiber Bragg gratings with 267 nm femtosecond radiation" Opt. Express 12, 5996-6001 (2004).

N. Groothoff, J. Canning, E. Buckley, K. Lyttikainen, and J. Zagari, "Bragg gratings in air-silica structured fibers" Opt. Lett. 28, 233-235 (2003).

M. Becker, J. Bergmann, S. Brckner, M. Franke, E. Lindner, M. W. Rothhardt, and H. Bartelt, "Fiber Bragg grating inscription combining DUV sub-picosecond laser pulses and two-beam interferometry" Opt. Express 16, 19169-19178 (2008).

M. Dubov, I. Bennion, S. A. Slattery, and D. N. Nikogosyan, "Strong long-period fiber gratings recorded at 352 nm" Opt. Lett. 30, 2533-2535 (2005).

G. Violakis, and S. Pissadakis, Improved efficiency Bragg grating inscription in a commercial solid core microstructured optical fiber' (9th International Conference on Transparent Optical Networks, Rome, 2, pp. 217-220, 1-5 July 2007).

V. Beugin, L. Bigot, P. Niay, M. Lancry, Y. Quiquempois, M. Douay, G. Mlin, A. Fleureau, S. Lempereur, and L. Gasca, "Efficient Bragg gratings in phosphosilicate and germanosilicate photonic crystal fiber" Appl. Opt. 45, 8186-8193 (2006).

J. Canning, "Gratings and grating devices in structured fibers using 193 nm from an ArF laser" in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides: Applications and Fundamentals, OSA Technical Digest Series, Vol. 17 (Optical Society of America, Washington, 2007).

J. Canning, N. Groothoff, K. Cook, C. Martelli, A. Pohl, J. Holdsworth, S. Bandyopadhyay, and M. Stevenson, "Gratings in Structured Optical Fibres" Laser Chem. 2008, 239417 (2008).

G. D. Marshall, D. J. Kan, A. A. Asatryan, L. C. Botten, and M. J. Withford, "Transverse coupling to the core of a photonic crystal fiber: the photo-inscription of gratings" Opt. Express 15, 7876-7887 (2007).

T. Geernaert, T. Nasilowski, K. Chah, M. Szpulak, J. Olszewski, G. Statkiewicz, J. Wojcik, K. Poturaj, W. Urbanczyk, M. Becker, M. Rothhardt, H. Bartelt, F. Berghmans, and H. Thienpont, "Fiber bragg gratings in germanium-doped highly birefringent microstructured optical fibers" IEEE Photonic. Tech. L. 20, 554-556 (2008).

A. J. Taylor, R. B. Gibson, and J. P. Roberts, "Two-photon absorption at 248 nm in ultraviolet window materials" Opt. Lett. 13, 814-816 (1988).

L. Skuja, "Optically active oxygen-deficiency-related centers in amorphous silicon dioxide" J. Non-Cryst. Solids 239, 16-48 (1998).

C. M. Smith, N. F. Borrelli, J. J. Price, and D. C. Allan, "Excimer laserinduced expansion in hydrogen-loaded silica" Appl. Phys. Lett. 78, 2452-2454 (2001).

M. Alam, J. Abramczyk, U. Manyam, J. Farroni, and D. Guertin, "Performance of optical fibers in space radiation environment" (6th International Conference on Space Optics, Proceedings of ESA/CNES ICSO 2006, Noordwijk, p. 107.1, 27-30 June 2006).

A. Othonos, and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Boston, 1999).

C. L. Liou, L. A. Wang, M. C. Shih, and T. J. Chuang, "Characteristics of hydrogenated fiber Bragg gratings" Appl. Phys. A 64, 191-197 (1997).

S. Pissadakis, M. Livitziis, G. Violakis, and M. Konstantaki, "Inscription of Bragg reflectors in all-silica microstructured optical fibers using 248nm, picosecond, and femtosecond laser radiation" Proc. SPIE 6990, 69900H (2008).

P. Karlitschek, G. Hillrichs, and K.-F. Klein, "Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 2: All-silica fibers with low-OH undoped core" Opt. Commun. 155, 386-397 (1998).

S. Kannan, M. E. Fineman, J. Li, and G. H. Sigel Jr., "Nonuniform distribution of oxygen hole centers in silica optical fibers" Appl. Phys. Lett. 63, 3440-3442 (1993).

H. Hosono, M. Mizuguchi, L. Skuja, and T. Ogawa, "Fluorine-doped SiO2 glasses for F2 excimer laser optics: fluorine content and colorcenter formation" Opt. Lett. 24, 1549-1551 (1999).

H. G. Limberger, C. Ban, R. P. Salath, S. A. Slattery, and D. N. Nikogosyan, "Absence of UV-induced stress in Bragg gratings recorded by high-intensity 264 nm laser pulses in a hydrogenated standard telecom fiber" Opt. Express 15, 5610-5615 (2007).

A. I. Kalachev, D. N. Nikogosyan, and G. Brambilla, "Long-period fiber grating fabrication by high-intensity femtosecond pulses at 211 nm" J. Lightwave Technol. 23, 2568-2578 (2005).