Journal of the European Optical Society - Rapid publications, Vol 4 (2009)

Analysis of calcium carbonate for differentiating between pigments using terahertz spectroscopy

M. Mizuno, K. Fukunaga, S. Saito, I. Hosako


Calcium carbonate that is used as an art pigment exhibits strong absorption at approximately 3 THz. In this study, the authors investigated the relationship between the absorption and the condition of calcium carbonate crystals. By employing terahertz time-domain spectroscopy (0.5–4 THz), they verified that terahertz absorption energy depended on the crystal direction and crystal shape of the powder sample due to large birefringence. Further, the authors observed the difference in the crystal structure (calcite or aragonite) and the presence of impurities in natural calcium carbonate such as shells through terahertz absorbance spectra. The absorbance peak value of calcite at around 3 THz was four times as large as the peak value of aragonite. The absorbance spectral width increased because of the presence of these impurities. From the above observation, this study demonstrated that a certain kind of calcium carbonate crystal could be distinguished by terahertz spectroscopy.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2009.09044]

Full Text: PDF

Citation Details

Cite this article


A. J. Xie, C. Y. Zhang, Y. H. Shen, L. G. Qiu, P. P. Xiao, and Z. Y. Hu, "Morphologies of calcium carbonate crystallites grown from aqueous solutions containing polyethylene glycol" Cryst. Res. Technol. 4, 967 (2006).

S. Ichikawa, T. Matsui, M. Sawada, M. Naruse, and Y. Matsuda, "Distinction of raw materials (shells and limestone) for calcium carbonate based on the shape of their particles II : an attempt at making a chart for distinction" JJSCCP 52, 13 (2007).

C. Li, G. D. Botsaris, and D. L. Kaplan, "Selective in vitro effect of peptides on calcium carbonate crystallization" Cryst. Growth Des. 2, 387 (2002).

Y. Ueno, and K. Ajito, "Analytical terahertz spectroscopy" Anal. Sci. 24, 185 (2008).

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, "Terahertz spectroscopy" J. Phys. Chem. B 106, 7146 (2002).

K. Fukunaga, Y. Ogawa, S. Hayashi, and I. Hosako, "Terahertz spectroscopy for art conservation" IEICE Electron. Expr. 4, 258 (2007).

A. Yamamoto, "Coulomb interactions and optically-active vibrations of calcite-type carbonates" B. Chem. Soc. Jpn. 49, 1479 (1976).

E. R. Cowley, and A. K. Pant, "Lattice dynamics of calcite" Phys. Rev. B 8, 4795 (1973).

H. H. Teng, and P. M. Dove, "Surface site-specific interactions of aspartate with calcite during dissolution: implications for biomineralization" Am. Mineral. 82, 878 (1997).

R. Rungsawang, Y. Ueno, I. Tomita, and K. Ajito, "Angle-dependent terahertz time-domain spectroscopy of amino acid single crystals" J. Phys. Chem. B 110, 21259 (2006).

A. J. Skinner, J. P. Lafemina, and H. J. F. Jansen, "Structure and bonding of calcite: a theoretical study" Am. Mineral. 79, 205 (1994).

S. D. Kelly, M. G. Newville, L. Cheng, K. M. Kemner, S. R. Sutton, P. Fenter, N. C. Sturchio, and C. Spötl, "Uranyl incorporation in natural calcite" Environ. Sci. Technol. 37, 1284 (2003).

Th. Posch, A. Baier, H. Mutschke, and Th. Henning, "Carbonate in space: the challenge of low-temperature data" Astrophys. J. 668, 993 (2007).

A. Yamamoto, Y. Shiro, and H. Murata, "Optically-active vibrations and elastic constants of calcite and aragonite" B. Chem. Soc. Jpn. 47, 265 (1974).