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1 INTRODUCTION

Ever since the introduction of so-called next generation se-
quencing in 2005 [1], the speed at which DNA, or more specif-
ically nucleic acids, can be sequenced has increased rapidly.
The increase of sequencing performance in next generation
sequencing is enabled by the massive parallelization of the
detection of the sequencing reaction, such that multiple parts
on a nucleic acid are detected at the same time. Predomi-
nantly, the systems currently available for sequencing rely on
clonal amplification of the DNA followed by optical detec-
tion [1]–[3]. The clonal amplification ensures that the optical
signal upon incorporation of a labeled fluorophore is ampli-
fied, thereby improving the signal to noise ratio. However,
the bias introduced by the clonal amplification, which typ-
ically relies on some form of amplification by polymerase
chain reaction (PCR), subsequently led to the development of
systems which do direct single molecule detection, i.e. with-
out a PCR-based amplification step [4, 5]. Of these, the sys-
tem of Pacific Biosciences is of particular interest as it relies
on single molecule real-time (SMRT) sequencing, enabled by
the use of a nanophotonic, so-called zero-mode waveguide
(ZMW) [6], in which the incorporation of labeled nucleotides
by a polymerase molecule bound to the ZMW is followed
in real-time. A dedicated holographic phase mask generates
a 2-dimensional array of thousands of focused light beams,
each illuminating a ZMW structure and exciting an evanes-
cent field for probing the sequencing reaction [7]. The advan-
tage of this approach for sequencing is that ’reads’ of the DNA

fragments are generated at relatively high speed compared to
other optical methods, because the need for advanced chem-
ical processing required to start nucleotide incorporation re-
action is eliminated. Consequently, the rate at which a nu-
cleotide will be incorporated in the sequencing reaction is no
longer determined by microfluidic wash steps, but merely by
the rate at which a polymerase is incorporating the bases. Typ-
ically this could be in the base/ms range. However, in the cur-
rent SMRT sequencing system this has been slowed down to
1-3 base/s [5]. Still, this renders the sequencing speed of SMRT
sequencing two orders of magnitude faster than approaches
based on clonal amplification and optical detection [1]–[3].
Additionally, by monitoring the time it takes for the incorpo-
ration of a nucleotide, this system can discern the incorpora-
tion of methylated bases [8], which is important from biolog-
ical perspective, as methylation of DNA plays an important
role in gene regulation and thereby cancer.

Optically the disadvantage of this system is that all the zero-
mode waveguides (each holding a DNA fragment to be se-
quenced) have to be excited in parallel [7] and need to be mon-
itored continuously, as the incorporation of nucleotides is a
stochastic process. This requires rather high laser powers as
each ZMW needs to be driven preferably close to saturation.
From elementary consideration, using typical numbers for the
absorption cross section and excited state lifetime of dyes, the
saturation power P per ZMW is typically a few mW/µm2.
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Since the overall laser power scales linearly with the number
of ZMWs, this leads to a required excitation power of around
10 W when several thousands of ZMWs are to be used. In view
of the need to come to more efficient and integrated cartridge-
based systems [9, 10] for routine clinical adoption of DNA
sequencing, the use of waveguide structures has been exam-
ined. This with the aim to exploit the fact that light inside the
evanescent field inside the ZMW is not propagating and can
be ‘reused’ for excitation of other ZMWs by using a waveg-
uide, thereby reducing the required laser power needed for
exciting these ZMW arrays.

The paper is organized as follows. After a description of the
used optical modeling techniques, two different approaches
will be discussed, using diffractive optical structures in order
to achieve a more efficient ZMW evanescent field excitation:
one in which the excitation is perpendicular and an alterna-
tive in which the excitation is along the plane of the ZMWs.
The outcome of both approaches will be discussed in terms of
feasibility and effectiveness when being applied in an experi-
mental setting.

2 MODELING

Wiregrids consist of periodically spaced, thin metallic strips
on a transparent dielectric substrate, and are readily being
used e.g. as element in display applications [11]. These wire-
grids can be considered as one-dimensional ZMW waveg-
uides and an example of such a wiregrid is given in Fig-
ure 1(a). The TE electric field is not allowed to propagate in
such waveguides whenever the gap between the two metal
wires is smaller than half the wavelength of the light. Instead
an evanescent field will be excited in the waveguide which is
localized within distances less than a wavelength perpendic-
ular to the wiregrid substrate. These well localized fields in
between the metal wires may excite single molecules for e.g.
SMRT sequencing. Two methods will be described for excit-
ing this evanescent field inside the wiregrid waveguides. The
first one relies on focusing an EM field on the ZMW structures
using diffractive optical elements. The second method uses
a metal-insulator-metal (MIM) waveguide with a TE polar-
ized input field and the ZMWs embedded in one of the metal
cladding layers. The schematic of these designs is shown in
Figure 1.

2.1 Binary phase gratings

We can use a binary phase grating (BPG) by manipulating the
diffraction orders in the near field (≈100 µm) to have a fo-
cusing effect of the field where the ZMWs are located. Con-
sidering all the orders diffracted from the grating we evaluate
the total field in the substrate and then manipulate the grating
parameters to have the desired field distribution at the ZMW
plane .

The grating with the substrate and the metal ZMW layer is
shown in Figure 2. The electric fields reflected and transmitted

 

FIG. 1 Schematic of a wire grid and the two methods for exciting an evanescent field.

a) The space between two neighboring wires of a wiregrid acts as a ZMW where an

evanescent field is created, used for probing molecules in a surface sensitive way. b)

For the grating design we have a plane wave incident from the top of the substrate

where a grating is used to increase the field in the ZMWs. c) For the MIM design the

light would be incident from the side of the wiregrid substrate using an additional

waveguide with a metal cladding layer.

by the grating are given by [12]:

Eincident = exp[−jk0n1{sin(θ)x + cos(θ)z}]
Ereflected = Eincident + ∑

i
Ri exp[−j(kxix + k1,ziz)]

Etransmitted = ∑
i

Ti exp[−j(kxix + k2,ziz)] (1)

where i is the diffraction order, and Ri and Ti are the normal-
ized electric field amplitudes for the ith reflected and trans-
mitted waves respectively. The propagation constants for the
fields are given by

kl,zi = k0

[
n2

l −
(

kxi
k0

)2
]1/2

l = 1, 2; i = 0, 1, 2, ...

kxi = k0

[
n1 sin(θ)− iλ0

Λ

]
(2)

We have assumed an implicit time dependence given by
exp (−jωt) where ω > 0. With the metal ZMW layer below
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FIG. 2 Diagram of the binary phase grating with the substrate and the metal layer

shown in (a). Here Λ is the grating period, f the grating fraction and d the grating

height. Considering Ei to be the input electric field, the fields reflected from the grating

in the substrate is shown in (b).

the substrate, the field transmitted by the grating (forward
wave 1 in Figure 2) is reflected back into the substrate (back-
ward wave 2 in Figure 2). Now, if Ri for this backward wave
is much larger than Ti, the field is again reflected back into the
substrate (forward wave 3 in Figure 2) and thus we have a sus-
tained field in the substrate due to multiple reflections from
the grating and the metal layer. This is schematically shown
in Figure 2(b) where the reflection of the metal ZMW layer
is assumed to be 100%. The total electric field is thus an in-
finite sum of all the reflected components of the field for all
grating orders, and is given by the following expression (TE
polarized):

Esubs = ∑
n

∑
i
{Rn

i Ti exp[−j(kxix− k2,ziz)]}

+ ∑
n

∑
i

Rn
i Ti exp[−j(kxix− k2,zi(2w− z)}]

=
∞

∑
i=1

Ti
exp[−jkxix]{exp[jk2,ziz] + exp[jk2,zi(2w− z)]}

1− Ri
(3)

The performance of these binary phase gratings in terms of
increasing the electric field at the ZMW locations will be dis-
cussed with some model assumptions based on typical exper-
imental conditions. A wiregrid ZMW substrate has a typical
grid periodicity of several microns, hence Λ = 1 µm. The
grating fraction f , being the ratio of the width of the higher
refractive index (ridge) material to that of the lower refractive
index material (groove), is chosen to be 0.7. With the ZMWs
aligned at the center of the grating ridges (higher refractive in-
dex) a larger ridge width maximizes the field at its center. The
substrate is chosen to have the same material as the grating
ridge for simplicity and to reduce reflection losses at the grat-
ing substrate boundary. The refractive index of the substrate
is chosen to be 1.6. We consider normal incidence for simplic-
ity as it assures a symmetric distribution of the field along the
yz-plane. The wavelength of light is taken as 450 nm.

With these parameters the electric field inside the substrate
has been evaluated using Eq. (3) for different values of grat-
ing height d and substrate thickness w. Appropriate values of
d and w have been chosen by maximizing the electric field
at the metal-substrate interface, directly below the center of

the grating ridge where the ZMWs will be located. From this
2-dimensional parameter space, an optimum working point of
d = 500 nm and w = 33 µm has been established, bearing in
mind the manufacturing requirements for the substrate. The
electric field distribution (Ey) in the substrate using Eq. (3) is
shown in Figure 3. For reference, the same model system is
also solved using a finite elements method (FEM) [13] and the
results are also shown in Figure 3. A close resemblance be-
tween both field distributions is observed. Any discrepancy
may arise due to the assumption of a perfect conductor for the
metal for the analytical calculation while the real refractive in-
dex of the metal (Al) was used for the FEM calculations. Also
for the analytical calculation, an infinite number of reflections
in the substrate were assumed for simplicity while in reality,
and as shown by the FEM calculations, this assumption does
not hold.

Figure 4 shows the mean electric field and intensity in the sub-
strate just above the ZMWs for an input field of 1 V/m. Ac-
cording to the more exact FEM calculations an increase of the
field at each ZMW can be expected of a factor 5.3. The value
of the electric energy density (W = 1

2 εE2
y) at the position of

the ZMW is 35.95 J/m3, leading to an increase in excitation
intensity at each ZMW of several decades:

Wevan

Winput
=

εE2
evan

ε0E2
input

=
ε

ε0
E2

evan = 71.91 (4)

where E2
evan (28.1 V2/m2) is the average of the square of the

field just above the ZMWs as shown in Figure 4 and ε = 2.56.
The overall efficiency of the design with respect to increasing
the evanescent field intensity as a function of excitation input
power will be discussed in the following sections.

2.2 Metal- insulator-metal (MIM)
waveguides

An alternative approach to increase the local field intensity in-
side the ZMW is to use a metal-insulator-metal (MIM) waveg-
uide to guide the light in a thin layer just above the ZMW
wiregrid plane, as shown in Figure 5. Since the core of the
waveguide has a much smaller cross sectional area than the
area illuminated in the grating design, one would expect to
achieve a larger gain in overall excitation efficiency using this
MIM waveguide solution.

The TE-polarized field inside the MIM will propagate as a sum
of several TE polarized guided modes of which the propaga-
tion constants βm, as given by Eq. (5), are real valued [14]. The
part of the total field distribution that propagates in the posi-
tive z-direction is given by [15]:

Etotal(x, z) = ∑
m

Ey,m(x, z)

Ey,m(x, z) = amum(x) exp(−jβmz)

um(x) =


√

2
w cos

(mπx
w
)

, m = 1, 3, 5, ...√
2
w sin

(mπx
w
)

, m = 2, 4, 6, ...

am =
√

2wE0

βm =

√
(k0n)2 − m2π2

w2 (5)
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FIG. 3 The field distribution Ey is shown in side-view, e.g. as a function of the depth in the substrate (z) for a fixed total substrate thickness w = 33 µm and position along the

binary phase grating (x). Here Λ = 1 µm, substrate refractive index of 1.6 , λ = 450 nm, d = 500 nm. The field is calculated analytically using Eq. (3) (left) and also using FEM

calculations (right).

 

FIG. 4 The field distribution Ey near the ZMW for the design shown in Figure 3 (side-view). The field (V/m) is calculated using FEM calculations (left). The intensity distribution

(E2y) at the metal-substrate boundary for λ = 450 nm for the grating design for one ZMW using FEM calculations (right).

Here k0 = 2π/λ, n is the refractive index (n = 1.45) and w the
height of the waveguide. The metallic walls of the waveguide
are assumed to be perfectly conducting.

For maximum coupling of the field into the ZMWs, the field
maxima of the propagating modes need to coincide with the
actual positions of the zero mode waveguides. Furthermore,
ideally only a single mode (m) should propagate inside the
waveguide in order to ensure a rather uniform intensity distri-
bution along the propagation direction of the mode. The latter
may be achieved by using a binary grating with period p on
top of the substrate and matching the propagation constant of
one of the grating orders to the propagation constant βm of a
specific waveguide mode m. We should mention here that for
the rest of the study the waveguides with only a single prop-
agating mode will be treated, which is assured by using the
grating and normal incidence to couple a particular mode in
the waveguide.

Due to the finite length L of the waveguide the propagat-

ing mode m will be reflected back and forth leading to a
standing wave pattern inside the waveguide with periodic-
ity π/βm. The exact locations of the corresponding intensity
maxima thereby strongly depend on the waveguide dimen-
sions L and w. As a result the local intensity at the position
of the ZMWs depends strongly on manufacturing tolerances
of the waveguide, which is not acceptable. This can be solved
by incorporating an intermediate “bridge” waveguide, hav-
ing a width (a) of several standing wave periodicities and
effectively transferring the core mode intensity towards the
ZMWs. This is illustrated in Figure 6 where a bridge waveg-
uide of (e.g.) 400 nm effectively couples the TE mode electric
field to the ZMW regardless of the exact value of L.

A drawback of using these relatively wide bridge structures
is backscattering of the central mode intensity in the direc-
tion opposite to the propagation direction, thereby reducing
the overall distance the field can propagate inside the cen-
tral waveguide. Furthermore the intensity of the propagat-
ing mode will gradually decrease due to intrinsic absorption

14019- 4



J. Europ. Opt. Soc. Rap. Public. 9, 14019 (2014) M. Sarkar, et al.

 

FIG. 5 Schematic of the MIM waveguide design. The grating is used to couple a field

with a single β in the waveguide so that we have single mode propagation in the

waveguide. This helps to have an uniform field in the ZMWs. The ‘bridge’ structure is

needed to reduce the tolerance on the length of the grating.

 

FIG. 6 The mean of the magnitude of the electric field (m=3) at a section of the

waveguide is plotted with the distance along the z-axis for two values of L (50 µm and

55 µm). With a ZMW of 100 nm wide (position shown by vertical lines), the coupled

field will strongly vary with L. However, using a bridge structure with a width of around

400 nm the total coupled field becomes largely invariant to changing L.

at the metal walls of the MIM waveguide. In order to opti-
mize the bridge-waveguide structure for maximum propaga-
tion distance we use coupled mode theory [16] to calculate
the amount of backscattered light. Here the MIM waveguide
is considered as the unperturbed system and the bridge to be
a dielectric perturbation. Furthermore we assume that the for-

ward wave consists of only one mode that does not change
during propagation. The electric field of the back scattered
wave can then be deduced as (Appendix A):

A−p = Constant× sin(βma)

×

 sin
(

c1pw
2

)
c1p

+
sin
(

c2pw
2

)
c2p

 ; p = 1, 3, 5...

C1p =
pπ

w + d
− mπ

w

C2p =
pπ

w + d
+

mπ

w
(6)

where m is the mode in the unperturbed waveguide, and p
are all the possible propagating modes present in a waveg-
uide with height w + d. The second part of Eq. (6) represents
the solution of the overlap integral between the mode of the
unperturbed waveguide of height w and the modes of the per-
turbed waveguide of height w + d. The bridge parameters d
and a are shown in Figure 5.

The bridge-waveguide design has been simulated thoroughly
for different parameters w, a, d and L, using the analytic ap-
proach of Eq. (6) and FEM calculations. For a large number
of bridges (> 10) the simulation results start to deviate, due
to the failure of the assumptions made in the analytic model.
Figure 7 shows the results of FEM calculations on the TE field
inside the central waveguide, for an optimum parameter set
d = a = 545 nm, w = 900 nm and L = 70 µm, a 3rd order
propagating mode being excited inside the waveguide, and
with 20 bridges/ZMWs facing the central waveguide. Here
the bridges are 2.5 µm separated apart and the ZMWs have
a width of 100 nm. The input field is TE polarized with an
amplitude of 1 V/m and the metal is chosen to be aluminum.

Due to scattering and absorption the field intensity gradually
decreases along the length of the waveguide. Figure 8 shows
the mean intensity at the interface between the bridges and the
actual ZMWs. From this the ZMW coupling efficiency with
respect to the incoming field can be calculated:

Wevan

Winput
=

εE2
evan

ε0E2
input

=
ε

ε0
E2

evan = 1.68 (7)

where E2
evan = 0.8 is the average of the square of the fields at

the boundary of the ZMW and the bridge as shown in Figure 8
and ε = 2.10. This intensity gain of 1.68 for the MIM waveg-
uide design is substantially lower as compared to the grating
design. However, from an experimental point of view, the ra-
tio between the energy density in the ZMW and the overall to-
tal optical power, needed to excite a certain number of ZMWs,
is the parameter to be considered. This will be discussed in the
following sections.

2.2.1 MIM waveguide absorption loss

So far for the analytical calculations we assumed the metal
to be a perfect conductor. Taking absorption into account the
propagation constant β is no longer purely real but has an
imaginary part and can be written as β = β′ − iβ′′. The imagi-
nary part β′′ is responsible for the attenuation along the length
of the waveguide (z) and as a result the field shows an ex-
ponential decay expressed as exp(−β′′z). For a symmetrical
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FIG. 7 The magnitude of the TE field (in V/m) in a waveguide with w = 900 nm. The

dimension of the bridge is a × d = 545 nm × 545 nm. Length of the waveguide is

70 µm and the separation of the ZMWs is 2.5 µm. The calculation is done using FEM

at λ = 450 nm.

Waveguide Maximum Max. number
height w usable length of ZMWs

(nm) (µm) (NZMW)
900 62.19 24

1500 103.65 41
2100 145.11 58
2700 186.57 74
3300 228.03 91
3900 269.49 107
4500 310.95 124

TABLE 1 The total number of available ZMWs as a function of waveguide height w.

For each height w, a single mode is excited with mode number m = w/(p/2) with p

being the period of the grating used to couple the mode into the waveguide. The core

refractive index of the waveguide is 1.45, the metal is aluminum and the wavelength

is 450 nm.

MIM waveguide the real and the imaginary parts of the prop-
agation constant can be approximated as (TE modes) [15]:

β′ = k0ε
1
2
d

·
{

1− 1
2εd

[
mπ

k0w

]2 [
1−

(
2

k0w

)
Re
{

2(εd − εm)
1
2

}]}

β′′ = −k0ε
− 1

2
d [m2π2(k0w)−3]Im

{
2(εd − εm)

− 1
2

}
(8)

where k0 = 2π/λ, εd and εm are the complex dielectric con-
stants of the dielectric core and the metal cladding respec-
tively, w is the central core thickness and m is the order of the
mode that propagates in the waveguide.

FEM calculations were done for MIM waveguides of three dif-
ferent heights (w = 900 nm, 1500 nm, 2100 nm), each with a
total length of 70 µm and bridge spacing of 2.5 µm. A grat-
ing with period 600 nm was used to couple a single mode
(with m = 3, 5, 7 respectively) into the MIM waveguide as
described before. The heights of the waveguide have been
chosen such that the propagation constant β of the guided
mode is the same in all three cases, just like the dimension
of the bridge for minimum backscattering, as discussed be-

fore (d = a = 545 nm). Figure 9(a) shows the mean field along
the length of the waveguide (z) as calculated by the FEM for
the three different waveguide widths. As expected, the atten-
uation becomes less for increasing waveguide widths and it
follows closely the trend predicted by the analytical formulae
of Eq. (8). In Figure 9(b) the intensity of the electric field distri-
bution inside the MIM waveguide is plotted. For all heights w
the value of the energy density of the evanescent field at
the interface of the bridges and the ZMWs is approximately
1/2εE2

evan = 0.8. The number of bridges, and corresponding
ZMWs, that can be effectively used is governed by the absorp-
tion of light along the length of the waveguide. Considering
only absorption in the metal, the field decays along the length
of the waveguide with an exponential factor exp(−β′′z). If we
assume that the maximum allowable decrease in field is a fac-
tor of 2, to be able to efficiently couple into the ZMWs, then the
total number of ZMWs is given by NZMW = log(2)/(β′′Λ),
where the absorption constant β′′ depends on the waveguide
height w, as expressed by Eq. (8) and Λ = 2.5 µm is the spacing
of the bridges. As a result in Table 1, the number of available
ZMWs is given as a function of the waveguide width w, taking
the metal absorption into account.

3 ZMW EXCITATION EFFICIENCIES

A proper figure of merit when comparing the binary phase
grating and the MIM waveguide designs with plane bulk il-
lumination of NZMW zero mode waveguides presently used
in SMRT sequencing [7] is the ratio between the energy den-
sity of the evanescent electric field inside the ZMWs to the
required overall input power of the excitation beam. For a
straightforward comparison let us assume that the ZMWs
have a footprint AZMW of 0.1 × 100 µm2 and that they are
separated Λ = 1 µm apart. The efficiency of both designs can
now be defined as the input power required to maintain a unit
energy density (Wevan) in the ZMWs:

ηBPG ≡
Wevan

Pinput
=

(
Wevan

Winput

)
BPG
· 1

c · Ainput

= 71.91 · 1
c · NZMW · 1 · 100 µm2 =

2.39 · 103

NZMW

[
J/m3

W

]
(9)

ηMIM ≡
Wevan

Pinput
=

(
Wevan

Winput

)
MIM
· 1

c · Ainput

= 1.68 · 1
c · w · 100 µm

=
56

w(in µm)

[
J/m3

W

]
(10)

where w is the height of the MIM waveguide channel in µm
and is related to the number of ZMWs according the results
expressed in Table 1.

In order to make a fair comparison of BPG and MIM excita-
tion with plain far field illumination of a series of ZMWs, the
evanescent field inside the ZMWs is estimated for far field ex-
citation by calculating the overlap of a diffraction limited Airy
illumination profile and the ZMW geometry. For a rectangu-
lar shaped ZMW with dimensions 0.1× 100 µm2 and a typical
focusing NA of 0.8 this overlap is ηAiry = PZMW/PAiry = 0.17.
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FIG. 8 The intensity distribution at the boundary of the ZMW and the bridges of Figure 7. The inset shows the field distribution at the 11th to 13th ZMW starting from the input

side. The field is calculated using FEM calculations.

 

 

 

 

 

 

FIG. 9 a) The mean electric field magnitude along the length of the waveguide with 24 ZMWs, each separated by Λ = 2.5 µm. FEM calculations were used to find the fields for

three different heights (w) of the waveguide (solid lines) and it was also calculated analytically using Eq. (10) (dashed lines). The metal used was aluminum and the wavelength

of light was 450 nm. (b) FEM calculations with d = 900 nm, 1500 nm and 2100 nm. A grating of period (p) 600 nm was used to have a single mode (m = 3, 5, 7 respectively).The

dimensions of the bridge are 545×545 nm2 and the wavelength of light is 450 nm.
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FIG. 10 The efficiencies of the MIM and BPG design compared to far field excitation.

The values of the efficiencies for the grating design are calculated from Eq. (10). The

efficiencies for the MIM design are also calculated from Eq. (10) with the values of w

corresponding to each NZMW from Table 1. The values are for the design wavelength

of λ = 450 nm.

The energy density inside a single ZMW is then given by

Wevan = Ievan/c =
PZMW

AZMW · c
=

ηAiry

AZMW · c
Pinput

NZMW

resulting in an efficiency for far field (FF) illumination of:

ηFF ≡
Wevan

Pinput
=

ηAiry

c · AZMW · NZMW
=

56.7
NZMW

[
J/m3

W

]
(11)

These excitation efficiencies are plotted in Figure 10. From
the figure it is immediately evident that the excitation of a
ZMW using the BPG or MIM design is more than an or-
der of magnitude more efficient as compared to far field il-
lumination. A typical fluorophore saturation intensity equals
1 mW/µm2, requiring an evanescent energy density of ap-
proximately 3.3 J/m3. In order to have 100 ZMWs excited with
this energy density, according to Figure 10, we need an overall
laser input power of 0.14 W, 0.25 W and 6.2 W respectively for
the BPG, MIM waveguide design and far field illumination.

Although both the BPG and the MIM waveguide approaches
result in an increase of excitation efficiency of more than a fac-
tor of 10, the underlying physical mechanisms are quite differ-
ent. In the BPG the efficiency increase is mainly governed by
the reduction of the “focused” spot size just above the ZMWs.
This is due to the abundance of high diffraction angles close to
90 degrees inside a high refractive index substrate, and being
equivalent to a NA>1 focusing. In the MIM waveguide ap-
proach the increase in excitation efficiency is based upon “re-
cycling” of the input beam. All the energy contained in the in-
put beam is coupled into the MIM waveguide mode that sub-
sequently couples to all the bridge waveguides and ZMWs.
The reason that the efficiency for MIM waveguide excitation is
not higher and decreases with the number of ZMWs is mainly
due to the absorption of the energy by the waveguide metal.

For practical purposes the proposed structures can be fabri-
cated with modern fabrication techniques, as we took manu-
facturing tolerances into account when choosing actual design
parameters. The BPG structure consists of a simple grating
placed on a substrate of width around 33 µm which is straight-
forward to fabricate and the efficiencies as calculated should

be realized in a practical situation. For the MIM waveguide,
the only stringent criterion for reaching a high efficiency is the
presence of a single propagating mode in the waveguide. In
practical situations, this can be achieved by the use of a grat-
ing at the input of the waveguide, as proposed here. Actual
verification and fine-tuning of the simulations will be done in
a future experimental study.

4 CONCLUSIONS

In this paper we studied the excitation efficiency of zero mode
waveguides, using two different types of diffractive struc-
tures. Both the binary phase grating (BPG) and the metal-
insulator-metal (MIM) waveguide concepts are based on the
fact that light inside the evanescent field of a ZMW is not
propagating and, by proper optical design, the ZMW input
power can be reused for excitation of other ZMWs. The bi-
nary phase grating uses multiple reflections between the grat-
ing and the metal interface of the ZMW structures, whereas
the MIM design relies on mode propagation inside a metal-
lic waveguide. Using analytical reasoning and with the help
of FEM simulations we showed that the excitation efficiency
of zero modes waveguides can be increased with a factor
of 20 or more compared to plain far field focusing onto the
ZMW array. These zero mode waveguide arrays are being
used in e.g. DNA sequencing. From an application point of
view, this results in at least a factor of 10 increase in mea-
surement throughput or a considerable cost reduction by the
use of less powerful laser systems. Such methods of excita-
tion of ZMWs can open up new avenues for further research.
E.g. 2D ZMW structures could be used instead of the slit ap-
proach that is currently studied. First preliminary 2D calcula-
tions using smaller grid dimensions (in order to circumvent
memory constraints) indeed suggest that a further increase of
the throughput is to be expected using 2D diffracting struc-
tures.
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A BACK-SCATTERING FOR THE
BRIDGE-WAVEGUIDE STRUCTURE

If there are no dielectric perturbations in a waveguide, the
modes of the waveguide are orthogonal and independent of
each other. However any change from the ideal (unperturbed)
waveguide will perturb the modes and couple energy be-
tween them. Using mode orthogonallity and considering that
the perturbation causes slow variations in the amplitude we
can derive the equation for changes in the amplitudes of the
forward (A+) and the backward (A−) going waves as [16]:

∂A−

∂z
exp j(βz + ωt)− ∂A+

∂z
exp−j(βz−ωt) =

− j
2ω

∂2

∂t2

∫
∞

Ppert(x) · Ey,mp (x)dx (12)
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where Ppert is the polarization perturbation given
by the product of the change in the dielectric con-
stant ∆ε = ε0 · (n2

dielectric − n2
metal) and the for-

ward going wave of the unperturbed waveguide,
A+Ey,mu (x, z, t) = A+Ey,mu (x) exp j(−βz + ωt). Here,
Ey,mp (x) is the electric field of the perturbed waveguide,
ndielectric and nmetal are the refractive indices of the metal and
the dielectric core of the waveguide respectively. Note that
∆ε is zero everywhere else apart from the perturbed region
(−a/2 < x < a/2;−w/2 < z < w/2 + d) and Ey,mu (x) is
zero everywhere else apart from the unperturbed waveguide
(−w/2 < z < w/2). The modes of the system are denoted
by the index m with subscripts u and p representing the
unperturbed and perturbed waveguides respectively.

We can see (Figure 11) that the unperturbed waveguide can
support only a single mode, corresponding to the thickness w
which was excited using the grating as described. Due to the
perturbation, modes corresponding to thickness w+ d are also
introduced to the waveguide and the coupling of these new
modes to the mode of the unperturbed waveguide will result
in the backscattering.

We assume that the forward wave does not change in ampli-
tude during propagation and so ∂A+/∂z = 0. The field dis-
tribution for the perturbed and the unperturbed waveguide is
given by Eq. (5) and can be written as

Ey,mΣ(x) = amΣ umΣ (x) (13)

umΣ(x) =


√

2
dΣ

cos
(

mΣπx
dΣ

)
, mΣ = 1, 3, 5...√

2
dΣ

sin
(

mΣπx
dΣ

)
, mΣ = 2, 4, 6...

(14)

where mΣ = mp for the modes of the perturbed waveg-
uide and mΣ = mu for the single mode of the unperturbed
waveguide and dΣ = d for the unperturbed waveguide and
dΣ = d + w for the perturbed waveguide. Using Eq. (12) we
get

A− =
−jω∆εA+

2

×
a/2∫
−a/2

exp(j2βz)dz
d/2∫
−d/2

Ey,mu (x)Ey,mp (x)dx (15)

Considering we have an odd mode with propagation constant
β propagating in the unperturbed waveguide we have

A− =
−jω∆εA+

2
sin βa

d/2∫
−d/2

cos
(muπx

d

)
Ey,mp (x)dx (16)

Using Eq. (14) for Ey,mp (x) we get for mp = 1, 3, 5....

A− = Constant× sin(βa)

 sin
(

C1d
2

)
C1

+
sin
(

C2d
2

)
C2

 (17)

C1 =
mpπ

d + w
− muπ

d
; C2 =

mpπ

d + w
+

muπ

d
(18)

 

 

FIG. 11 The schematic of the unperturbed waveguide and the perturbed waveguide with

the bridge. Only one mode is allowed to propagate in the unperturbed waveguide. The

perturbed region can be considered as a waveguide with thickness d + w and thus

introduces new modes into the waveguide.
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