
J. Europ. Opt. Soc. Rap. Public. 7, 12050 (2012) www.jeos.org

Measurement accuracy of the pulse repetition
interval-based excess fraction (PRIEF) method: an
analogy-based theoretical analysis
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We describe a novel approach for a theoretical analysis of the measurement accuracy of the pulse repetition interval-based excess fraction
(PRIEF) method, which is expected to be useful for high-precision length measurement. The proposed approach is introduced by focusing
on an analogy between the PRIEF method and the conventional length-measurement method. The theoretical analysis results show that
the absolute accuracy achievable by the PRIEF method is nanometer-order, and the relative accuracy achievable by the PRIEF method is
10−8-order, which is affected mainly by the measuring accuracy of the refractive index of air. We conclude that our analysis is useful for
further development of the PRIEF method.
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1 INTRODUCTION

In 2009, a femtosecond optical frequency comb (FOFC) was
adopted in Japan as the national standard tool for measuring
length. Because of its stable frequency performance, the FOFC
is believed to have brought about fundamental improvements
in the accuracy of length measurements [1]–[3] However, the
FOFC has not reached its full potential, since there is as yet no
easy-to-use standard technology directly linked to the FOFC
length standard tool for performing distance measurements
(at the time of this publication); this has limited the develop-
ment and applications of FOFC-based length measurement.
(for example, see [4]–[6]).

To challenge this problem, we proposed the pulse repetition
interval-based excess fraction (PRIEF) method [7]–[9], which
can be realized in a modified Michelson interferometer for an
arbitrary and absolute length measurement. We also reported
a single pulse repetition interval version of PRIEF method,
that compared to the conventional time-of-flight method - be-
cause interference fringes were used as the time-recording
device-the PRIEF method can be expected to provide higher
measurement accuracy [10].

In our previous report, [10] we obtained a 1.5-meter length
measurement with a precision of several micrometers. The
feasibility of the proposed method (though it was a single
pulse repetition interval version PRIEF method) has thus been
demonstrated. However, the expected high measurement ac-
curacy was not achieved, due to the limited calibration accu-
racy of the gauge blocks we used and an inadequate experi-
ment environment. In addition, we did not provide a theoreti-
cal estimation of the measurement limits of the PRIEF method,
because of the journal’s length-limit for reports.

To further test the performance of the PRIEF method, in the
present study we split the accuracy influence factor into two
parts based on the principles of the PRIEF method: the inte-
ger part and the fractional part. For the determination of the
measurement uncertainties of these two parts, we introduce
a new theoretical analysis approach. This approach is based
on an analogy between the proposed method and the con-
ventional length-measurement method. The error of each of
the two parts is estimated in comparison with those of con-
ventional methods whose measurement errors are well estab-
lished.

Here, we give explanations in order to show the relation of the
PRIEF method to length measurement standard FOFC tool.
PRIEF method can be used to practically perform a distance
metrology that is directly linked to an FOFC length standard
tool. Just as a conventional Excess Fraction method can de-
termine an arbitrary and absolute length of a gauge block
based on the wavelength of a monochromatic laser source
(for example, an iodine–stabilized helium-neon laser, which
is the former national standard tool for measuring length),
the PRIEF method can range an arbitrary and absolute length
as a function of the pulse repetition interval length of an
FOFC.

The measurement principles of the PRIEF method are re-
viewed and summarized in Section 2. A theoretical evalua-
tion of the measurement uncertainties of the PRIEF method is
given in Section 3. This theoretical evaluation also explains the
superiority of the PRIEF method. Our main conclusions and a
discussion of future work are provided in Section 4.
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FIG. 1 Schematic diagram of a MPTI-based interferometer.

2 PRINCIPLES OF THE PRIEF METHOD

The PRIEF method can be regarded as a multi-pulse repetition
interval version of the multiple pulse train interference-based
(MPTI-based) length measurement method, about which a re-
cent theoretical analysis [11] and experimental demonstration
[10] were reported. For convenience of explanation, let us first
briefly review the idea of obtaining an arbitrary and abso-
lute length measurement with a modified Michelson interfero-
meter, as illustrated in Figure 1.

A pulse train from an FOFC is introduced into a double
Michelson interferometer. The double interferometer consists
of two Michelson interferometers; one is an ordinary Michel-
son interferometer, and the other is an unbalanced optical-
path Michelson interferometer. The two Michelson interfer-
ometers consist of an identical beam splitter and a reference
mirror, and different object mirrors (object mirror M1 and ob-
ject mirror M2). Object mirror M2 is located far from object
mirror M1, at an arbitrary length L. During the measurement,
by moving the common reference mirror, we can observe the
interference fringes for determining the length L.

The observed interference fringes can be written as: [11]

I(l) ∝ 2
√

Ire f Iobj1 × exp
[
−
(

2
√

ln 2l
/

Lcoh

)2
]

× cos(k× l) + 2
√

Ire f Iobj2

× exp
[
−
(

2
√

ln 2(l + ∆)
/

Lcoh

)2
]

× cos(k× (l + ∆)− N × ∆φce) . (1)

where Iref, Iobj1, and Iobj2 are the intensities reflected by
the reference mirror, object mirror M1, and object mirror
M2, respectively. Value TR is the pulse repetition period of
the FOFC source. When the electric field packet repeats at
the pulse repetition period TR, the ”carrier” phase slips by
∆φce to the carrier-envelope phase because of the difference
between the group and phase velocities. Value l is the dis-
tance between the reference mirror and object mirror M1.
The equation ∆ = ε × c × TR = mod(2L, N × c × TR),
0 ≤ ε < 1, returns 2L − N × c × TR, the equation
N = f loor[2L

/
(c × TR)]( f loor[2L

/
(c × TR)] rounds the

elements of 2L
/
(c × TR) to the nearest integers less than or

equal to 2l
/
(c× TR), and c is the light velocity in vacuum. In

addition, we assume that the FOFC light source used shows
a Gaussian spectral distribution, and Lcoh is the temporal
coherence length of one pulse.

Because there is no need to move the object mirrors, we can
understand that the length is measured in absolute value. If ε

and N can be measured by any means, then an arbitrary and
absolute distance L can be decided as follows:

L = (N + ε)× c× TR/2 . (2)

Eq. (2) means that if a pulse repetition interval c × TR of an
FOFC has sufficient stability as a ruler, an arbitrary and ab-
solute distance L can be estimation as a function of the pulse
repetition interval c× TR. As described below, we consider the
qualification of a pulse repetition interval c× TR as a scale.

First, we consider the pulse repetition period TR. The pulse
repetition period TR and the pulse repetition frequency frep
are connected by TR = 1

/
frep. Based on the theory of un-

certainty propagation, we get σ2(∆TR
/

TR) = σ2(∆ frep
/

frep).
Then, we turn our attention to the frequency domain for get-
ting an estimate for σ2(∆ frep

/
frep).

Currently, the highest absolute frequency stability that can be
achieved by an FOFC is about 10−18-order [12]. In general,
higher harmonics of the pulse repetition frequency is phase-
locked to an radio frequency (RF) standard [13]. An RF stan-
dard can already provide frequency stability at the 10−13 and
10−14 levels [14, 15]. The pulse repetition frequency can be
simply detected by a photodiode. We can conclude that the
measurement uncertainty of the pulse repetition frequency
σ2(∆ frep

/
frep) is higher than the 10−13 level. This means that

the measurement uncertainty of the pulse repetition period is
also higher than the 10−13 level.

Having analyzed the stability of the pulse repetition period
TR, we now turn to the topic of the measurement accuracy of
the speed of light. The existence or absence of the propagation
medium will affect the results of this analysis. In a vacuum,
the speed of light is invariant. The speed of light in the vac-
uum cis defined as 299.792 458 meters per second. Obviously,
the accuracy is of the order 10−9.

Because length measurements are generally made in air, the
propagation medium discussed here is limited to air. The dis-
cussion of other media can be done in a similar manner. In
general, the Edlén Equation [16, 17] and Ciddor Equation [18]
are used to obtain the refractive index of air n. Then the speed
of light in air can be calculated as cn = c/n. It is well known
that the uncertainty of the Edlén Equation and Ciddor Equa-
tion is about 10−8-order.

From the above-mentioned analysis, we can conclude that the
pulse repetition interval of an FOFC is very steady, and it is
suitable as a ruler in vacuum and air. Thus far we have proven
the utility of pulse repetition interval as a ruler for distance
measurement.

As seen in Eq. (2), to measure length by using the pulse repe-
tition interval of an FOFC, we must decide the integer part N
and the fraction part ε. As expressed in Eq. (1) and as shown in
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FIG. 2 Comparison of the white light method and the proposed method. (a) White light method. (b) Proposed mehtod.

our previous experiment, [10] we can measure a fraction part
ε by determining the distance between the peaks of obtained
multiple pulse trains interference fringes. Regarding the in-
teger part, we think that the use of the conventional Excess
Fraction method [19, 20] will be appropriate, and this will be
introduced later in the ”uncertainties evaluation” section.

In our previous study, [11] we proposed the use of fringes
analysis to measure a relative phase difference for obtaining
an integer part. However, in air, phase is susceptible to at-
mospheric turbulence. In addition, the demand for the carrier
phase slips, which is given by ∆φce = 2π fCEO

/
frep, is severe

in air and vacuum. Because cos(φ) = cos(2π + φ), for de-
termining the value of an integer part without 2π-ambiguity,
N × ∆φce < 2π is required. For a long-range measurement,
the value of the integer part N is large. That means that the
carrier phase slips must be small enough, and the value of
the offset shift frequency fCEO must be controlled to a value
smaller than fCEO < frep

/
N.

Before starting the error analysis, a summary of the principles
of the PRIEF method is appropriate. First, pulse repetition in-
terval is steady enough to serve as a ruler. Second, when a
pulse repetition interval is used for an arbitrary and absolute
length measurement, we need to determine an integer part
and a fraction part. Lastly, we propose the use of the conven-
tional Excess Fraction method to determine the integer part.

3 UNCERTAINTIES EVALUATION BASED
ON ANALOGY

Here we consider the accuracy influence factor on the integer
part and fractional part. For the uncertainties evaluation of the
fraction part, we need to consider a special case, N = 0. That
means L = ∆/2. By substituting N = 0 into Eq. (1), we obtain:

I(l) ∝ 2
√

Ire f Iobj1 × exp
[
−
(

2
√

ln 2l
/

Lcoh

)2
]

× cos(k× l) + 2
√

Ire f Iobj2

× exp
[
−
(

2
√

ln 2(l + ∆)
/

Lcoh

)2
]

× cos(k× (l + ∆)) . (3)

From Eq. (3), when l = 0 and l = −∆, we can observe the in-
terference fringes by identical pulse trains. Eq. (3) means that
the observed multiple pulse trains’ interference fringes ”de-

generate” into white light interference fringes, the same as can
be seen in white light interference (Figure 2).

Here, we briefly summarize the measuring principle of the
white light interference method. White light interference is a
well-established and powerful tool for non-contact 3D surface
profilometry that permits rapid and accurate measurements
without 2π ambiguity. Because of the short coherence length
of the white light source, a one-on-one relationship arises be-
tween the heights of the object surface and the peaks of the
fringe-visibility curve. We can obtain the height of the sur-
face corresponding to the location of the peak of the fringe-
visibility curve along the scanning axis.

The theoretical limits of white light interferometry have been
fully described [21]–[24]. Before using the result of the un-
certainties evaluation of the white light interference to evalu-
ate the PRIEF method, we need to verify whether any change
happened to the white light interference method by changing
a white light source into an FOFC.

In a white light interferometer, there is no difference between
a white light source and an FOFC. Basicly, we observe that
identical light parts interfere with each other. With a white
light source, the identical light parts are wave packets. With
an FOFC source, the identical parts are pulse trains.

The PRIEF method and the white light interference method
are the same for obtaining the distance from the peaks of the
interference fringe, although the cause of the interference is
different. The above-mentioned degeneration gives us a way
to estimate the measuring error of the fraction part. In the
PRIEF method, because the optical distance is relative large,
atmospheric turbulence will affect the relative position be-
tween the peaks of an interference fringe, but the turbulence
does not affect the measurement accuracy of the distance from
the peaks. In other words, both methods have the same accu-
racy for determining the distance from the peaks of an inter-
ference fringes.

Therefore, by using the result of the uncertainties evaluation
of the white light interference, we can conclude that the ab-
solute measuring accuracy of the fraction part is nanometer-
order, and the main influence factor is scan accuracy of the
reference mirror.

Having discussed the measuring uncertainties used to deter-
mine the fraction part, we will next focus our attention on the
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FIG. 3 Excess Fraction method. (a) Schematic diagram of optical setup. (b) Interference fringes.

uncertainties evaluation used to determine the integer part.
Here we summarize the Excess Fraction method, which was
proposed [19, 20] in the 1970s and widely applied [25]–[28].
An arbitrary and absolute distance L with a rough knowledge
of its range (namely, Lrough in [Lmin, Lmax ]) can be expressed
by the following equation.

L = λ1 × (Nλ,1 + ελ,1)
/

2 = . . . = λi × (Nλ,i + ελ,i)
/

2

= ... = λq × (Nλ,q + ελ,q)
/

2 , (4)

where the term λi represents an already known and steady
wavelength. Nλ,i and ελ,i are the integer part and the frac-
tion part for wavelength λi, respectively. A schematic descrip-
tion of the optical set for the Excess Fraction method and a
measuring fringe are shown in Figure 3. The fraction part ελ,i
can be measured from the displacement between the interfer-
ence fringes. An integer part Nλ,i can be decided by satisfying
Eq. (5):

Nλ,i =min

{
q

∑
i=1

[
λi × (Nλ,i + ελ,i)

2
− Lrough

]}
& λi × (Nλ,i + ελ,i)

/
2 ∈ [Lmin, Lmax]. (5)

Then L can be measured as:

Lmeas =
q

∑
i=1

[
λi × (Nλ,i + ελ,i)

/
2q
]
. (6)

The combined standard uncertainty of the measured distance,
σ2

c (Lmeas) is given by: [26]

σ2
c (Lmeas) =

q

∑
i=1

[(
λi
2q

)2
σ2(Nλ,i)

]
+

q

∑
i=1

[(
λi
2q

)2
σ2(ελ,i)

]

+
q

∑
i=1

[(
Nλ,i + ελ,i

2q

)2
σ2(λi)

]
(7)

where σ2(λi) is the uncertainty of wavelength in air influences
by stability of the wavelength of the light source for wave-
length λi, and σ2(Nλ,i) and σ2(ελ,i) are the uncertainty for the
integer part detection and fraction part detection, respectively.

The PRIEF method can be described and evaluated the same
way.

An arbitrary and absolute distance L can be expressed as:

L = c× TR,1 × (NTR,1 + εTR,1)
/

2

= ... = c× TR,i × (NTR,i + εTR,i)
/

2

= ... = c× TR,q × (NTR,q + εTR,q)
/

2 , (8)

where the term TR,i represents an already known and steady
pulse repeat interval. NTR,i and εTR,i are the integer part and
the fraction part for pulse repeat interval TR,i, respectively.

An integer part NTR,i can be decided using:

NTR,i =min

{
q

∑
i=1

[
c× TR,i × (NTR,i + εTR,i)

2
− Lrough

]}
& c× TR,i × (NTR,i + εTR,i)

/
2 ∈ [Lmin, Lmax]. (9)

Then Lcan be measured as:

Lmeas =
q

∑
i=1

[
c× TR,i × (NTR,i + εTR,i)

/
2q
]
. (10)

The combined standard uncertainty of the measured distance,
σ2

c (Lmeas) is given as:

σ2
c (Lmeas) =

q

∑
i=1

[(
c× TR,i

2q

)2
σ2(NTR,i)

]

+
q

∑
i=1

[(
c× TR,i

2q

)2
σ2(εTR,i)

]

+
q

∑
i=1

[(
NTR,i + εTR,i

2q

)2
σ2(c× TR,i)

]
(11)

where σ2(c× TR,i) is the uncertainty of pulse repetition inter-
val influences by stability of the pulse repetition interval of the
FOFC source, and σ2(NTR,i) and σ2(εTR,i) are uncertainties of
integer part detection and fraction part detection, respectively.

Considering that NTR,i represents an integral part of interfer-
ence orders for a long range, and that we can assume that the
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algorithm based on Eq. (9) has chosen the correct length solu-
tion, then σ2(NTR,i) = 0.

We have discussed σ2(εTR,i)in the uncertainty evaluation of
the integer part; let us turn our attention to σ2(c× TR,i). In a
vacuum, the uncertainty of a pulse repeat interval is only re-
versely proportional to the achievable control accuracy of the
repetition frequency. In air, the stability of a pulse repeat in-
terval is smaller than 10−9, but the achievable accuracy of the
refractive index of air is 10−8-order, usually. The uncertainty
of a pulse repeat interval is factually restricted by the mea-
surement uncertainty of the refractive index of air.

We think about measurement uncertainty by in-
tegrating the integer part and fraction part. In a

comparison of
q
∑

i=1

[(
NTR,i + εTR,i

/
2q
)2

σ2(c× TR,i)
]

and

q
∑

i=1

[(
c× TR,i

/
2q
)2

σ2(εTR,i)
]
, the larger term will limit

measurement accuracy. In vacuum, because the absolutely

measurement uncertainty of
q
∑

i=1

[(
c× TR,i

/
2q
)2

σ2(εTR,i)
]

is

of nanometer-order, which is limit of absolutely accuracy of
the PRIEF method. Because relative accuracy is proportional
to the length range, we can expect to measure long distances
with high accuracy. For example, measuring one kilometer
with nanometer accuracy means that the relative accuracy is
10−12-order.

In air, because the achievable measuring accuracy of the re-
fractive index of air is 10−8-order, the larger term normally

q
∑

i=1

[(
NTR,i + εTR,i

/
2q
)2

σ2(c× TR,i)
]
, will limit measurement

accuracy. For example, let’s assume the measure target is
one meter. That means the accuracy of the fraction part is
nanometer-order, and the accuracy of the integer part is tens
of nanometer-order. Therefore, the relative accuracy is 10−8-
order and the absolute accuracy is tens of nanometers-order.

This theoretical expectation corresponds well to the results de-
scribed in our previous report. [10] The achieved measuring
accuracy of the refractive index of air was 10−6-order, which
limited the relative accuracy.

4 SUMMARY

We have proposed a novel approach for the theoretical anal-
ysis of measurement limitations of the PRIEF method, by fo-
cusing on the analogy between the proposed method and the
conventional length measurement method. The accuracy es-
timate was divided into two parts. Based on the analogy be-
tween the proposed method and the white light method, we
conclude that the measurement accuracy of a fraction part
can reach nanometer-order. Based on the analogy between the
proposed method and the ordinary Excess Fraction method,
we found the following two conclusions. First, in vacuum,
long-distance measurement with high accuracy is promising.
Second, in air, the estimation of the refractive index of the
propagation medium is the bottleneck of the measurement ac-
curacy of an integral part.

By comparing these two parameters of accuracy limit, we ar-
rived at the following two conclusions. The first is that the
minimum absolute accuracy achievable by the PRIEF method
is nanometer-order, and it is limited by the scanning perfor-
mance of the scanning device. The second finding is that the
minimum relative accuracy achievable by the PRIEF method
is 10−8-order, and is mainly affected by the measurement ac-
curacy of the refractive index of the propagation medium. We
expect that this theoretical analysis will lead to further use of
the PRIEF method.
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