Journal of the European Optical Society - Rapid publications, Vol 11 (2016)

Polarization beating of random electromagnetic beams

H. Lajunen, J. Salaj, T. Setälä


We consider temporal interference of two stationary, quasi-monochromatic, partially polarized optical beams with different mean frequencies. We show that both the intensity and the polarization state, represented by the Stokes parameters, exhibit beating, i.e., periodic temporal variation with frequency specified by the difference of the mean frequencies. The contrasts, or visibilities, of the Stokes-parameter changes are characterized by the equal-time electromagnetic degree of coherence between the beams. If the beams are otherwise identical random processes, but with spectra centered at different frequencies, then the polarization modulation is characterized by the degree of polarization, consistently with a recent interferometric interpretation of this quantity. Our results provide insight into the role of polarization in beating of electromagnetic waves.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2016.16011]

Full Text: PDF

Citation Details

Cite this article


L. Mandel, and E. Wolf, Optical coherence and quantum optics (Cambridge University Press, Cambridge, 1995).

J. W. Goodman, Statistical optics (Wiley, New York, 2000).

C. Brosseau, Fundamentals of polarized light: a statistical optics approach (Wiley, New York, 1998).

A. Dogariu, and E. Wolf, ”Coherence theory of pairs of correlated wave fields,” J. Mod. Opt. 50, 1791–1796 (2003).

B. E. A. Saleh, and M. C. Teich, Fundamentals of photonics (second edition, Wiley, Hoboken, 2007).

J. Tervo, T. Setälä, and A. T. Friberg, ”Degree of coherence for electromagnetic fields,” Opt. Express 11, 1138–1143 (2003).

T. Setälä, J. Tervo, and A. T. Friberg, ”Complete electromagnetic coherence in the space-frequency domain,” Opt. Lett. 29, 328–330 (2004).

T. Setälä, J. Tervo, and A. T. Friberg, ”Contrasts of Stokes parameters in Young’s interference experiment and electromagnetic degree of coherence,” Opt. Lett. 31, 2669–2671 (2006).

L.-P. Leppnen, K. Saastamoinen, A. T. Friberg, and T. Setälä, ”Inter- ¨ ferometric interpretation for the degree of polarization of classical optical beams,” New J. Phys. 16, 113059 (2014).

L.-P. Leppänen, A. T. Friberg, and T. Setälä, ”Temporal electromagnetic degree of coherence and Stokes-parameter modulations in Michelson’s interferometer,” Appl. Phys. B 122, 32 (2016).

L. Mandel, and E. Wolf, ”Coherence properties of optical fields,” Rev. Mod. Phys. 37, 231–287 (1965).

A. T. Forrester, R. A. Gudmundsen, and P. O. Johnson, ”Photoelectric mixing of incoherent light,” Phys. Rev. 99, 1691–1700 (1955).

A. Javan, E. A. Ballik, and W. L. Bond, ”Frequency characteristics of a continuous-wave He-Ne optical maser,” J. Opt. Soc. Am. 52, 96–98 (1962).

G. Magyar, and L. Mandel, ”Interference fringes produced by superposition of two independent maser light beams,” Nature 198, 255–256 (1963).

A. Shevchenko, M. Roussey, A. T. Friberg, and T. Setälä, ”Ultrashort coherence times in partially polarized stationary optical beams measured by two-photon absorption,” Opt. Express 23, 31274–31285 (2015).

O. Korotkova, and E. Wolf, ”Generalized Stokes parameters of random electromagnetic beams,” Opt. Lett. 30, 198–200 (2005).

J. Tervo, T. Setälä, A. Roueff, Ph. Réfrégier, and A. T. Friberg, ”Two-point Stokes parameters: interpretation and properties,” Opt. Lett. 34, 3074–3076 (2009).

G. Basso, L. Oliveira, and I. Vidal, ”Complete characterization of partially coherent and partially polarized optical fields,” Opt. Lett. 39, 1220–1222 (2014).

T. Setälä, J. Tervo, and A. T. Friberg, ”Theorems on complete electromagnetic coherence in the space-time domain,” Opt. Commun. 238, 229–236 (2004).