Journal of the European Optical Society - Rapid publications, Vol 7 (2012)

Local field enhancement of nano-structured metallic target irradiated by polarized laser beam

M. Nikbakht, M. H. Mahdieh


The local field enhancement is studied numerically in samples of metallic nanoparticles (NPs) randomly distributed over a metallic substrate. The sample was assumed to be irradiated by polarized laser beam. Based on dipole-dipole approximation (DDA), the electric field was calculated Two-dimensionally at the irradiated region. The results show that the optimized field enhancement is strongly depends on NPs characteristics, beam polarization and incident angle.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2012.12025]

Full Text: PDF

Citation Details

Cite this article


S. Eustis, and M. A. El-Sayed, "Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes," Chem. Soc. Rev. 35, 209-217 (2006).

A. K. Sarychev, and V. M. Shalaev, "Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composits," Phys. Rep. 335, 275-371 (2000).

G. K. Stamplecoskie, J. C. Scaiano, V. S. Tiwari, and H. Anis, "Optimal Size of Silver Nanoparticles for Surface-Enhanced Raman Spectroscopy," J. Phys. Chem. C 115, 1403-1409 (2011).

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment," J. Phys. Chem. B 107, 668-677 (2003).

L. A. Lyon, M. D. Musick, P. C. Smith, B. D. Reiss, D. J. Pena, and M. J. Natan, "Surface plasmon resonance of colloidal Au-modified gold films," Sensor. Actuat. B 54, 118-124 (1999).

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers,, "Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods," Adv. Mater. 21, 973-978 (2009).

S. D. Standridge, G. C. Schatz, and J. T. Hupp, "Distance Dependence of Plasmon-Enhanced Photocurrent in Dye-Sensitized Solar Cells," J. Am. Chem. Soc. 131, 8407-8409 (2009).

S. Tsai, M. Ballarotto, D. B. Romero, W. N. Herman, H. Kan, and R. J. Phaneuf, "Effect of gold nanopillar arrays on the absorption spectrum of a bulk heterojunction organic solar cell," Opt. Express 18, A528-A535 (2010).

I. Diukman, L. Tzabari, N. Berkovitch, N. Tessler, and M. Orenstein, "Controlling absorption enhancement in organic photovoltaic cells by patterning Au nano disks within the active layer," Opt. Express 19, A64-A71 (2011).

C. Chen, J. Wang, F. Tsai, Y. Lu, Y. Kiang, and C. C. Yang, "Fabrication of sphere-like Au nanoparticles on substrate with laser irradiation and their polarized localized surface plasmon behaviors," Opt. Express 17, 14186-14198 (2009).

Y. Tanaka, G. Obara, A. Zenidaka, N. N. Nedyalkov, M. Terakawa, and M. Obara, "Near-field interaction of two-dimensional highpermittivity spherical particle arrays on substrate in the Mie resonance scattering domain," Opt. Express 18, 27226-27237 (2010).

J. Son, L. K. Verma, A. J. Danner, C. S. Bhatia, and H. Yang, "Enhancement of optical transmission with random nanohole structures," Opt. Express 19, A35-A40 (2010).

C. Reich, P. Gibbon, I. Uschmann, and E. Forster, "Yield Optimization and Time Structure of Femtosecond Laser Plasma Ka Sources," Phys. Rev. Lett. 84, 4846-4849 (2000).

P. Gibbon and O. N. Rosmej, "Stability of nanostructure targets irradiated by high intensity laser pulses," Plasma. Phys. Contr. F. 49, 1873-1883 (2007).

M. H. Mahdieh, R. Fazeli, and G. J. Tallents, "Soft x-ray enhancement from a porous nano-layer on metal targets irradiated by long laser pulses," J. Phys. B-At. Mol. Opt. 42, 125602 (2009).

P. Gibbon, M. Masek, U. Teubner, W. Lu, M. Nicoul, U. Shymanovich, A. Tarasevitch, P. Zhou, K. Sokolowski-Tinten, and D. V. der Linde, "Modelling and optimisation of fs laser-produced Ka sources," Appl. Phys. A-Mater. 96, 23-31 (2009).

W. A. Tisdale, K. J. Williams, B. A. Timp, D. J. Norris, E. S. Aydil, and X. Zhu, "Hot-Electron Transfer from Semiconductor Nanocrystals," Science 328, 1543-1547 (2010).

J. Li, S. Chen, P. Yu, H. Cheng, W. Zhou, and J. Tian, "Large enhancement and uniform distribution of optical near field through combining periodic bowtie nanoantenna with rectangular nanoaperture array," Opt. Lett. 36, 4014-4016 (2011).

J. Laverdant, S. Buil, J. P. Hermier, and X. Quelin, "Near-field intensity correlations on nanoscaled random silver-dielectric films," J. Nanophotonics 4, 049505 (2010).

J. Sancho-Parramon, "Near-field coupling of metal nanoparticles under tightly focused illumination," Opt. Lett. 36 3527 (2011).

M. Nikbakht and M. H. Mahdieh, "Optical responses of gold nanoparticles undergoing a change to cluster aggregates and laser beam characteristics effect," J. Phys. Chem. C 115, 1561-1568 (2011).

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, "Small-particle composites. I. Linear optical properties," Phys. Rev. B 53, 2425-2436 (1996).

M. Born, and E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1987).

W. J. Wild, and C. L. Giles, "Goos-Hanchen shift from absorbing media," Phys. Rev. A 25, 2099-2101 (1982).

A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Optics 37, 5271-5283 (1998).