Journal of the European Optical Society - Rapid publications, Vol 4 (2009)

Determination of 3D-region of interest using digital in-line holography with astigmatic Gaussian beams

N. Verrier, S. Coëtmellec, M. Brunel, D. Lebrun


An experimental method to visualize a 3D-region of interest (ROI) by means of an astigmatic Gaussian beam is proposed. This method allows to reduce the amount of image planes to be reconstructed thus saving computational time. ROI determination is performed without any computational step: particles that are located in the ROI can be distinguished from the others according to the hyperbolic shape of their diffraction pattern. Theoretical location of the ROI is determined by using the ABCD approach proposed in a previous paper [Appl. Opt. 47, 4147]. Experimental results are presented.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2009.09038]

Full Text: PDF

Citation Details

Cite this article


N. Verrier, S. Coëtmellec, M. Brunel, and D. Lebrun, "Digital in-line holography in thick optical systems: application to visualization in pipes" Appl. Opt. 47, 4147-4157 (2008).

N. Salah, G. Godard, D. Lebrun, P. Paranthoën, D. Allano, and S. Coëtmellec, "Application of multiple exposure digital in-line holography for particle tracking in a Bénard-von Kármán vortex flow" Meas. Sci. Technol. 19, 074001 (2008).

P. Picart, and J. Leval, "General theoretical formulation of image formation in digital Fresnel holography" J. Opt. Soc. Am. A 25, 1744-1761 (2008).

W. Yang, A. B. Kostinski, and R. A. Shaw, "Depth-of-focus reduction for digital in-line holography of particle fields" Opt. Lett. 30, 1303- 1305 (2005).

W. Li, N. C. Loomis, Q. Hu, and C. S. Davis, "Focus detection from digital in-line holograms based on spectral l1 norms" J. Opt. Soc. Am. A 24, 3054-3062 (2007).

J. de Jong, and H. Meng, "Digital holographic particle validation via complex wave" Appl. Opt. 46, 7652-7661 (2007).

F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, "Focus plane detection criteria in digital holography microscopy by amplitude analysis" Opt. Express 14, 5895-5908 (2006).

E. Malkiel, J. N. Abras, and J. Katz, "Automated scanning and measurements of particle distributions within a holographic reconstructed volume" Meas. Sci. Technol. 15, 601-612 (2004).

L. Onural, and M. T. Özgen, "Extraction of three-dimensional object-location information directly from in-line holograms using Wigner analysis" J. Opt. Soc. Am. A 9, 252-260 (1992).

L. Denis, C. Fournier, T. Fournel, C. Ducottet, and D. Jeulin, "Direct extraction of the mean particle size from a digital hologram" Appl. Opt. 45, 944-952 (2006).

W. Li, N. C. Loomis, Q. Hu, and C. Davis, Rapid extraction of 3D regions of interest from digital holograms (MTS/IEEE Oceans 2007 Conference, Vancouver, 29 September-4 October 2007).

F. Nicolas, S. Coëtmellec, M. Brunel, D. Allano, D. Lebrun, and A. J. E. M. Janssen, "Application of the fractional Fourier transformation to digital holography recorded by an elliptical, astigmatic Gaussian beam" J. Opt. Soc. Am. A 22, 2569-2577 (2005).

N. Verrier, S. Coëtmellec, M. Brunel, D. Lebrun, and A. J. E. M. Janssen, "Digital in-line holography with an elliptical, astigmatic Gaussian beam: wide-angle reconstruction" J. Opt. Soc. Am. A 25, 1459-1466 (2008).

H. M. Ozaktas, Z. Zalevsky, and M.A. Kutay, The Fractional Fourier Transform: with Applications in Optics and Signal Processing (John Wiley & Sons, 2001).