Journal of the European Optical Society - Rapid publications, Vol 11 (2016)

An analytical model for top-hat long transient mode-mismatched thermal lens spectroscopy

M. Sabaeian, H. Rezaei


It has been shown that a top-hat excitation beam gives rise to a more sensitive signal for the thermal lens spectroscopy (TLS). Recently, a numerical model has been presented for a top- hat excitation beam in a dual-beam mod-mismatched TLS [Opt. Lett. 33(13), 1464-1466 (2008)]. In this work, we present a full analytical version of this model. Our model was based on a new solution of time-dependent heat equation for a finite radius cylindrical sample exposed to a top-hat excitation laser beam. The Fresnel diffraction integration method was then used to calculate on-axis probe-beam intensity variations due to thermal lensing by taking the aberrant nature of the thermal lens into account. The model was confirmed with experimental data of LSCAS-2 with an excellent agreement.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2016.16004]

Full Text: PDF

Citation Details

Cite this article


M. L. Baesso, J. R. D. Pereira, A. C. Bento, and A. J. Palangana, ”Thermal lens spectrometry to study complex fluids,” Braz. J. Phys. 28, (1998).

D. A. Wruck, R. E. Russo, and R. J. Silva, ”Thermal lens spectroscopy of plutonium using a laser diode and fiber optics,” J. Alloy. Compd. 213–214, 481–483 (1994).

N. G. C. Astrath, J. Shen, M. L. Baesso, F. B. G. Astrath, L. C. Malacarne, P. R. B. Pedreira, A. C. Bento, et al., ”Material characterization with top-hat cw laser induced photothermal techniques: A short review,” J. Phys. Conf. Ser. 214, 012014 (2010).

N. Astrath, F. Astrath, J. Shen, J. Zhou, K. Michaelian, C. Fairbridge, L. Malacarne, et al., ”Arrhenius behavior of hydrocarbon fuel photochemical reaction rates by thermal lens spectroscopy,” Appl. Phys. Lett. 95, 191902 (2009).

A. Marcano, H. Cabrera, M. Guerra, R. A. Cruz, C. Jacinto, and T. Catunda, ”Optimizing and calibrating a mode-mismatched thermal lens experiment for low absorption measurement,” JOSA B 23, 1408–1413 (2006).

C. Jacinto, A. Andrade, T. Catunda, S. Lima, and M. Baesso, ”Thermal lens spectroscopy of Nd: YAG,” Appl. Phys. Lett. 86, 34104– 34104 (2005).

C. Jacinto, T. Catunda, D. Jaque, L. Bausa, and J. García-Solé, "Thermal lens and heat generation of Nd: YAG lasers operating at 1.064 and 1.34 µm,” Opt. Express 16, 6317–6323 (2008).

C. Jacinto, D. N. Messias, A. A. Andrade, S. Lima, M. L. Baesso, and T. Catunda, ”Thermal lens and Z-scan measurements: Thermal and optical properties of laser glasses–A review,” J. Non-Cryst. Solids 352, 3582–3597 (2006).

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, ”Long-Transient Effects in Lasers with Inserted Liquid Samples " J. Appl. Phys. 36, 3–8 (1965).

R. Escalona, ”Study of a convective field induced by thermal lensing using interferometry,” Opt. Commun. 281, 388–394 (2008).

S. J. Sheldon, L. V. Knight, and J. M. Thorne, ”Laser-induced thermal lens effect: a new theoretical model,” Appl. Optics 21, 1663–1669 (1982).

J. Hung, A. Marcano O, J. Castillo, J. González, V. Piscitelli, A. Reyes, and A. Fernández, ”Thermal lensing and absorbance spectra of a fluorescent dye solution,” Chem. Phys. Lett. 386, 206–210 (2004).

L. C. M. Miranda, ”On the use of the thermal lens effect as a thermo-optical spectroscopy of solids,” Appl. Phys. A 32, 87–93 (1983).

J. Shen, R. D. Lowe, and R. D. Snook, ”A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992).

N. G. Astrath, F. B. Astrath, J. Shen, J. Zhou, P. R. Pedreira, L. C. Malacarne, A. C. Bento, et al., ”Top-hat cw-laser-induced time-resolved mode-mismatched thermal lens spectroscopy for quantitative analysis of low-absorption materials,” Opt. Lett. 33, 1464–1466 (2008).

N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, et al., ”Arrhenius behavior of hydrocarbon fuel photochemical reaction rates by thermal lens spectroscopy,” Appl. Phys. Lett. 95, 191902 (2009).

J. Bernal-Alvarado, M. Sosa, R. Mayén-Mondragón, J. M. YánezLimón, R. Flores-Farías, F. Hernández-Cabrera, and P. Palomares, ”Mismatched Mode Thermal Lens for Assessing Thermal Diffusivity of Serum and Plasma from Human Blood,” Instrum. Sci. Technol. 34, 99–105 (2006).

R. Gutiérrez Fuentes, J. F. Sánchez Ramírez, J. L. Jiménez Pérez, J. A. Pescador Rojas, E. Ramón-Gallegos, and A. Cruz-Orea, ”Thermal Diffusivity Determination of Protoporphyrin IX Solution Mixed with Gold Metallic Nanoparticles,” Int. J. Thermophys. 28, 1048–1055 (2007).

C. Jacinto, T. Catunda, D. Jaque, J. Garcia Sole, and A. A. Kaminskii, "Thermal lens spectroscopy through phase transition in neodymium doped strontium barium niobate laser crystals,” J. Appl. Phys. 101, 023113–023116 (2007).

R. Mayén-Mondragón and J. M. Yáñez-Limón, ”Study of blue phases transition kinetics by thermal lens spectroscopy in cholesteryl nonanoate,” Rev. Sci. Instrum. 77, 044903 (2006).

M. Franko, ”Recent applications of thermal lens spectrometry in food analysis and environmental research,” Talanta 54, 1–13 (2001).

C. Hu, and J. R. Whinnery, ”New Thermooptical Measurement Method and a Comparison with Other Methods,” Appl. Optics 12, 72–79 (1973).

J. R. Whinnery, ”Laser measurement of optical absorption in liquids,” Accounts Chem. Res. 7, 225–231 (1974).

J. F. Power, ”Pulsed mode thermal lens effect detection in the near field via thermally induced probe beam spatial phase modulation: a theory,” Appl. Optics 29, 52–63 (1990).

P. Kumar, S. Dinda, and D. Goswami, ”Effect of molecular structural isomers in thermal lens spectroscopy,” Chem. Phys. Lett. 601, 163– 167 (2014).

R. D. Snook, and R. D. Lowe, ”Thermal lens spectrometry. A review,” Analyst 120, 2051–2068 (1995).

S. E. Bialkowski, and A. Chartier, ”Diffraction effects in singleand two-laser photothermal lens spectroscopy,” Appl. Optics 36, 6711–6721 (1997).

S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley-Blackwell, Haboken, 1996).

B. Li, and E. Welsch, ”Probe-beam diffraction in a pulsed top-hat beam thermal lens with a mode-mismatched configuration,” Appl. Optics 38, 5241–5249 (1999).

B. Li, S. Xiong, and Y. Zhang, ”Fresnel diffraction model for modemismatched thermal lens with top-hat beam excitation,” Appl. Phys. B 80, 527–534 (2005).

S. Wu and N. J. Dovichi, ”Fresnel diffraction theory for steadystate thermal lens measurements in thin films,” J. Appl. Phys. 67, 1170–1182 (1990).

J. Shen and R. D. Snook, ”A radial finite model of thermal lens spectrometry and the influence of sample radius upon the validity of the radial infinite model,” J. Appl. Phys. 73, 5286–5288 (1993).

H. S. J. J. C. Carslaw, Conduction of heat in solids (Clarendon Press, Oxford, 1959).

M. Sabaeian and H. Nadgaran, ”An analytical model for finite radius dual-beam mode-mismatched thermal lens spectroscopy,” J. Appl. Phys. 114, 133102–133107 (2013).

H. Nadgaran and M. Sabaian, ”Pulsed pump: Thermal effects in solid state lasers under super-Gaussian pulses,” Pramana - J. Phys. 67, 1119–1128 (2006).

A. A. Andrade, T. Catunda, I. Bodnar, J. Mura, and M. L. Baesso, "Thermal lens determination of the temperature coefficient of optical path length in optical materials,” Rev. Sci. Instrum. 74, 877–880 (2003).

S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, L. C. M. Miranda, and M. L. Baesso, ”Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review,” J. Non-Cryst. Solids 273, 215–227 (2000).

M. L. Baesso, J. Shen, and R. D. Snook, ”Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelengths,” J. Appl. Phys. 75, 3732–3737 (1994).

L. C. Malacarne, N. G. C. Astrath, and M. L. Baesso, ”Unified theoretical model for calculating laser-induced wavefront distortion in optical materials,” JOSA B 29, 1772–1777 (2012).

E. Peliçon, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, D. F. de Souza, S. L. Oliveira, et al., ”Temperature dependence of fluorescence quantum efficiency of optical glasses determined by thermal lens spectrometry,” J. Non-Cryst. Solids 304, 244–250 (2002).