Journal of the European Optical Society - Rapid publications, Vol 10 (2015)

Intrinsic Stokes parameters for 3D and 2D polarization states

J. J. Gil

Abstract


The second-order characterization of a three-dimensional (3D) state of polarization is provided either by the corresponding 3D coherency matrix or (equivalently) by the associated 3D Stokes parameters. The analysis of the polarization properties that are invariant under orthogonal transformations of the laboratory reference frame allows to define a set of six intrinsic Stokes parameters which provides a simplified interpretation of 3D states of polarization in terms of meaningful physical properties. The rotationally invariant properties of 2D states of polarization are straightforwardly retrieved in a consistent way, so that the 2D intrinsic Stokes parameters are constituted by the intensity, the degree of linear polarization and the degree of circular polarization.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2015.15054]

Full Text: PDF

Citation Details


Cite this article

References


C. Brosseau, Fundamentals of polarized light: a statistical optics approach (Wiley, New York, 1998).

J. Tervo, T. Setälä, and A. T. Friberg, ”Degree of coherence for electromagnetic fields,” Opt. Express 11, 1137–1143 (2003).

P. Réfrégier, and F. Goudail, ”Invariant degrees of coherence of partially polarized light,” Opt. Express 13, 6051–6060 (2005).

M. R. Dennis, ”Geometric interpretation of the three-dimensional coherence matrix for nonparaxial polarization,” J. Opt. A: Pure Appl. Opt. 6, S26–S31 (2004).

S. Banerjee, and A. Roy, Linear algebra and matrix analysis for statistics (CRC Press, Boca Raton, 2014).

J. J. Gil, ”Interpretation of the coherency matrix for threedimensional polarization states,” Phys. Rev. A 90, 043858 (2014).

J. J. Gil, ”Polarimetric characterization of light and media,” Eur. Phys. J. Appl. Phys. 40, 1–47 (2007).

I. San José, and J. J. Gil, ”Invariant indices of polarimetric purity. Generalized indices of purity for n×n covariance matrices,” Opt. Commun. 284, 38–47 (2011).

R. Barakat, ”Degree of polarization and the principal idempotents of the coherency matrix,” Opt. Commun. 23, 147–150 (1977).

T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, ”Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002).

J. J. Gil, J. M. Correas, P. A. Melero, and C. Ferreira, ”Generalized polarization algebra,” Monog. Sem. Mat. G. Galdeano 31, 161–167 (2004).

A. Luis, ”Degree of polarization for three-dimensional fields as a distance between correlation matrices,” Opt. Commun. 253, 10–14 (2005).

A. Luis, ”Polarization distribution and degree of polarization for three-dimensional quantum light fields,” Phys. Rev. A 71, 063815 (2005).

T. Setälä, K. Lindfors, and A. T. Friberg, ”Degree of polarization in 3D optical fields generated from a partially polarized plane wave,” Opt. Lett. 34, 3394–3396 (2009).

J. M. Auñón, and M. Nieto-Vesperinas, ”On two definitions of the three-dimensional degree of polarization in the near field of statistically homogeneous partially coherent sources,” Opt. Lett. 38, 58–60 (2013).

J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, ”Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005).

J. Ellis, and A. Dogariu, ”On the degree of polarization of random electromagnetic fields,” Opt. Commun. 253, 257–265 (2005).

J. J. Gil, and I. San José, ”3D polarimetric purity,” Opt. Commun. 283, 4430–4434 (2010).

C. J. R. Sheppard, ”Jones and Stokes parameters for polarization in three dimensions,” Phys. Rev. A 90, 023809 (2014).