Journal of the European Optical Society - Rapid publications, Vol 10 (2015)

Design of an efficient terahertz wave source from a GaP waveguide embedded in a silicon slot waveguide

K. Saito, T. Tanabe, Y. Oyama

Abstract


Here, we propose an efficient scheme for terahertz (THz) wave generation on the basis of difference frequency mixing (DFM) using a GaP ridge waveguide embedded in a silicon slot waveguide. Phase matching in the DFM process, between the nonlinear polarisation wave induced by two near-infrared pumps and the generated THz wave in the low-refractive-index slot waveguide, was achieved by utilising the modal birefringence of the fundamental transverse electric- and transverse magnetic-like modes at telecom wavelengths in the GaP ridge waveguide. The effective cross-sectional area of the THz wave in the waveguide was small, 220 μm2 at 2.26 THz, resulting in a photon conversion efficiency of 5.7x10-2%. The THz output power approached the multi-W level using the proposed waveguide structure.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2015.15024]

Full Text: PDF

Citation Details


Cite this article

References


M. Tonouchi, ”Cutting-edge terahertz technology,” Nat. Photon. 1, 97–105 (2007).

B. Ferguson, and X. C. Zhang, ”Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).

A. G. Markelz, A. Roitberg, and E. J. Heilweil, ”Pulsed terahertz spectroscopy of DNA, bovine serum albumin (BSA) and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320, 42–48 (2000).

S. Ohno, A. Hamano, K. Miyamoto, C. Suzuki, and H. Ito, ”Surface mapping of carrier density in a GaN wafer using a frequency-agile THz source,” J. Eur. Opt. Soc.-Rapid 4, 09012 (2009).

K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, ”Nondestructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11, 2549–2554 (2003).

P. U. Jepsen, D. G. Coole, and M. Koch, ”Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).

T. Tanabe, K. Suto, J. Nishizawa, T. Kimura, and K. Saito, ”Frequency-tunable high-power terahertz wave generation from GaP,” J. Appl. Phys. 93, 4610–4615 (2003).

K. Kawase, M. Mizuno, S. Sohoma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, et al., ”Difference-frequency terahertzwave generation from 4-dimethylamino-N-methyl-4-stilbazoliumtosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett. 24, 1065–1067 (1999).

J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama, ”Continuous-wave frequency-tunable terahertz-wave generation from GaP,” IEEE Photon. Technol. Lett. 18, 2008–2010 (2006).

I. Tomita, H. Suzuki, H. Ito, H. Takenouchi, K. Ajito, R. Rungsawang, and Y. Ueno, ”Terahertz-wave generation from quasiphase- matched GaP for 1.55 m pumping,” Appl. Phys. Lett. 88, 071118 (2006).

K. L. Vodopyanov, J. E. Schaar, P. S. Kuo, M. M. Fejer, X. Yu, J. S. Harris, V. G. Kozlov, et al.”Terahertz wave generation in orientation-patterned GaAs using resonantly enhanced scheme,” Proc. SPIE 6455, 645509 (2007).

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, ”Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).

K. Saito, T. Tanabe, Y. Oyama, K. Suto, and J. Nishizawa, ”Terahertzwave generation by GaP rib waveguides via collinear phasematched difference-frequency mixing of near-infrared lasers,” J. Appl. Phys. 105, 063102 (2009).

H. Cao, R. A. Linke, and A. Nahata, ”Broadband generation of terahertz radiation in a waveguide,” Opt. Lett. 29, 1751–1753 (2004).

S. Coleman, and D. Grischkowsky, ”Parallel plate THz transmitter,” Appl. Phys. Lett. 84, 654–656 (2004).

G. Chang, C. J. Divin, J. Yang, M. A. Musheinish, S. L. Williamson, A. Galvanauskas, and T. B. Norris, ”GaP waveguide emitters for high power broadband THz generation pumped by Yb-doped fiber lasers,” Opt. Express 15, 16308–16315 (2007).

C. Staus, T. Kuech, and L. McCaughan, ”Continuously phasematched terahertz difference frequency generation in an embedded-waveguide structure supporting only fundamental modes,” Opt. Express 16, 13296–13303 (2008).

K. Suizu, K. Koketsu, T. Shibuya, T. Tsutsui, T. Akiba, and K. Kawase, ”Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation,” Opt. Express 17, 6676–6681 (2009).

Y. H. Avetisyan, ”Terahertz-wave surface-emitted differencefrequency generation without quasi-phase-matching technique,” Opt. Lett. 35, 2508–2510 (2010).

K. Saito, T. Tanabe, and Y. Oyama, ”Polarization selective terahertz-wave generation from GaP ridge waveguide under collinear phase-matched difference-frequency mixing,” Jpn. J. Appl. Phys. 53, 102102 (2014).

K. Saito, T. Tanabe, and Y. Oyama, ”THz-wave generation from GaP THz photonic crystal waveguides under difference-frequency mixing,” Opt. Photon. J. 2, 201–205 (2012)

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, ”Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).

Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, ”Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29, 1626–1628 (2004).

R. Sun, P. Dong, N.-N. Feng, C.-Y. Hong, J. Michel, M. Lipson, and L. C. Kimerling, ”Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm,” Opt. Express 15, 17967 (2007).

M. Nagel, A. Marchewka, and H. Kurz, ”Low-index discontinuity terahertz waveguides,” Opt. Express 14, 9944–9954 (2006).

T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, et al., ”Optical modulation and detection in slotted silicon waveguides,” Opt. Express 13, 5216–5226 (2005).

C. A. Barrios, and M. Lipson, ”Electrically driven silicon resonant light emitting device based on slot-waveguide,” Opt. Express 13, 10092–10101 (2005).

C. A. Barrios, ”High-performance all-optical silicon microswitch,” Electron. Lett. 40, 862–863 (2004).

T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, et al.,”Optical modulation and detection in slotted silicon waveguides,” Opt. Express 13, 5216–5226 (2005).

C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, ”Slot-waveguide biochemical sensor,” Opt. Lett. 32, 3080–3082 (2007).

J. Xia, J. Yu, Y. Li, and S. Chen, ”Single-mode condition for silicon rib waveguides with large cross sections,” Opt. Eng. 43, 1953–1954 (2004).

A. B. Fallahkhair, K. S. Li. and T. E. Murphy, ”Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26, 1423–1431 (2008).

E. V. Loewenstein, D. R. Smith, and R. L. Morgan, ”Optical constants of far infrared materials. 2: Crystalline solids,” Applied Optics 12, 398–406 (1973).

K. Saito, T. Tanabe, Y. Oyama, K. Suto, T. Kimura, and J. Nishizawa, ”Terahertz-wave absorption in GaP crystals with different carrier densities,” J. Phys. Chem. Solids 69, 597–600 (2008).

E. D. Palik (ed.), Handbook of optical constants of solids (Academic Press, New York, 1985).

V. A. Felipe, and L. M. Hayden, ”Simplified model for optical rectification of broadband terahertz pulses in lossy waveguides including a new generalized expression for the coherence length,” Opt. Express 21, 24398–24412 (2013).

R. W. Boyd, Nonlinear optics (Third edition, Academic Press, New York, 2008).

W. L. Faust, and C. H. Henry, ”Mixing of visible and near-resonance infrared light in GaP,” Phys Rev. Lett. 17, 1265–1268 (1966).

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, ”Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104, 221105 (2014).