Journal of the European Optical Society - Rapid publications, Vol 9 (2014)

Low-cost resonant cavity Raman gas probe for multi-gas detection

J. Thorstensen, K. H. Haugholt, A. Ferber, K. A. H. Bakke, J. Tschudi

Abstract


Raman based gas sensing can be attractive in several industrial applications, due to its multi-gas sensing capabilities and its ability to detect O_2 and N_2. In this article, we have built a Raman gas probe, based on low-cost components, which has shown an estimated detection limit of 0.5 % for 30 second measurements of N_2 and O_2. While this detection limit is higher than that of commercially available equipment, our estimated component cost is approximately one tenth of the price of commercially available equipment. The use of a resonant Fabry-Pérot cavity increases the scattered signal, and hence the sensitivity, by a factor of 50. The cavity is kept in resonance using a piezo-actuated mirror and a photodiode in a feedback loop.

The system described in this article was made with minimum-cost components to demonstrate the low-cost principle. However, it is possible to decrease the detection limit using a higher-powered (but still low-cost) laser and improving the collection optics. By applying these improvements, the detection limit and estimated measurement precision will be sufficient for e.g. the monitoring of input gases in combustion processes, such as e.g. (bio-)gas power plants. In these processes, knowledge about gas compositions with 0.1 % (absolute) precision can help regulate and optimize process conditions.

The system has the potential to provide a low-cost, industrial Raman sensor that is optimized for specific gas-detection applications.


© The Authors. All rights reserved. [DOI: 10.2971/jeos.2014.14054]

Full Text: PDF

Citation Details


Cite this article

References


C. C. Austin, B. Roberge, and N. Goyer, ”Cross-sensitivities of electrochemical detectors used to monitor worker exposures to airborne contaminants: false positive responses in the absence of target analytes,” J. Environ. Monitor. 8(1), 161–166 (2006).

H. Meixner, and U. Lampe, ”Metal oxide sensors,” Sensor. Actuat. B-Chem. 331, 198–202 (1996).

S. Capone, A. Forleo, L. Francioso, R. Rella, P. Siciliano, J. Spadavecchia, and D. S. Presicce, ”Solid state gas sensors: State of the art and future activities,” J. Optoelecton. Adv. M. 5(5), 1335–1348 (2003).

A. Honne, H. Odegard, H. Schumann-Olsen, H. Mosebach, D. Kampf, T. Stuffler, and G. Tan, ”ANITA–Preparing for Automatic Air Analyses on the ISS,” in Proceedings of International Conference On Environmental Systems (SAE - Society of Automotive Engineers, Rome, 2005).

”OptoSense,” http://www.optosense.com/.

”GasSecure,” http://www.gassecure.com/.

D. A. Long, The Raman effect: a unified treatment of the theory of Raman scattering by molecules (John Wiley & Sons Ltd, West Sussex, 2002).

S. Biedrzycki, Advanced techniques for gas-phase raman spectroscopy (Master thesis, University of Pittsburgh, 2011).

J. Kiefer, T. Seeger, S. Steuer, S. Schorsch, M. C. Weikl, and A. Leipertz, ”Design and characterization of a Raman-scatteringbased sensor system for temporally resolved gas analysis and its application in a gas turbine power plant,” Meas. Sci. Technol. 19(8), 085408 (2008).

J. B. Slater, J. M. Tedesco, R. C. Fairchild, and I. R. Lewis, ”Raman spectrometry and its adaption to the industial environment,” in Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line I. R. Lewis, and H. G. M. Edwards, eds. (Marcel Dekker Inc., New York City, 2001).

M. E. Andersen, and R. Z. Muggli, ”Microscopical techniques in the use of the molecular optics laser examiner Raman microprobe,” Anal. Chem. 53(12), 1772–1777 (1981).

”ThermoScientific - TruScan,” http://www.ahurascientific.com/ material-verification/products/truscan/.

”OceanOptics - IDRaman mini,” http://oceanoptics.com/product/ idraman-mini/.

”SciAps - Inspector500,” http://sciaps.com/portable-raman-spectrometers/inspector-500/.

M. A. Young, D. A. Stuart, O. Lyandres, M. R. Glucksberg, and R. P. Van Duyne, ”Surface-enhanced Raman spectroscopy with a laser pointer light source and miniature spectrometer,” Can. J. Chem. 82(10), 1435–1441 (2004).

Y. Oki, J. Takafuji, and M. Maeda, ”Nonlinear Raman spectroscopies with Raman shifter for sensitive gas detection,” IEEE LEOS Ann. Mtg. 99, 191–193 (1999).

R. A. Hill and D. L. Hartley, ”Focused, multiple-pass cell for Raman scattering.,” Appl. Optics 13(1), 186–92 (1974).

K. C. Utsav, Development of a multiple-pass Raman spectrometer for flame diagnostics (Dissertation thesis, University of Texas, 2013).

J. M. Tedesco, and J. B. Slater, ”Ellipsoidal raman signal amplifier,” U. S. Patent US 2014/0036347 A1 (2014).

R. A. Hill, A. J. Mulac, and C. E. Hackett, ”Retroreflecting multipass cell for Raman scattering,” Appl. Optics 16(7), 2004–2006 (1977).

X. Li, Y. Xia, L. Zhan, and J. Huang, ”Near-confocal cavityenhanced Raman spectroscopy for multitrace-gas detection,” Opt. Lett. 33(18), 2143–2145 (2008).

X. Yang, A. S. P. Chang, B. Chen, C. Gu, and T. C. Bond, ”High sensitivity gas sensing by Raman spectroscopy in photonic crystal fiber,” Sensor. Actuat. B-Chem. 176, 64–68 (2013).

W. F. Pearman, J. C. Carter, S. M. Angel, and J. W.-J. Chan, ”Multipass capillary cell for enhanced Raman measurements of gases,” Appl. Spectrosc. 62(3), 285–9 (2008).

S. Brunsgaard Hansen, R. W. Berg, and E. H. Stenby, ”High-pressure measuring cell for Raman spectroscopic studies of natural gas,” Appl. Spectrosc. 55(1), 55–60 (2001).

S. Ohara, S. Yamaguchi, M. Endo, K. Nanri, and T. Fujioka, ”Performance characteristics of power build-up cavity for Raman spectroscopic measurement,” Opt. Rev. 10(5), 342–345 (2003).

R. Salter, J. Chu, and M. Hippler, ”Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy,” Analyst 137, 4669–4676 (2012).

”Atmosphere Recovery Inc,” http://www.atmrcv.com/technology. html.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons Ltd, New York, 1991).

E. Voges, and K. Petermann, Optische Kommunikationstechnik (Springer, Heidelberg, 2002).

J. D. Koch, and R. K. Hanson, ”Temperature and excitation wavelength dependencies of 3-pentanone absorption and fluorescence for PLIF applications,” Appl. Phys. B-Lasers O. 76(3), 319–324 (2003).

T. Bakke, A. Vogl, O. Z˙ ero, F. Tyholdt, I.-R. Johansen, and D. Wang, ”A novel ultra-planar, long-stroke and low-voltage piezoelectric micromirror,” J. Micromech. Microeng. 20(6), 064010 (2010).

T. Bakke, and I.-R. Johansen, ”A robust, non-resonant piezoelectric micromirror,” in Proceedings of 16th International Conference on Optical MEMS and Nanophotonics 171–172 (IEEE, Istanbul, 2011).

E. Kikkinides, R. Yang, and S. Cho, ”Concentration and recovery of carbon dioxide from flue gas by pressure swing adsorption,” Ind. Eng. Chem. Res. 32, 2714–2720 (1993).

X. Xu, C. Song, R. Wincek, J. M. Andresen, B. G. Miller, and A. W. Scaroni, ”Separation of CO2 from Power Plant Flue Gas Using a Novel CO2 ‘ Molecular Basket ’ Adsorbent,” Fuel Chem. Div. Prepr. 48(1), 162–163 (2003).

S. C. Eichmann, J. Kiefer, J. Benz, T. Kempf, A. Leipertz, and T. Seeger, ”Determination of gas composition in a biogas plant using a Raman-based sensor system,” Meas. Sci. Technol. 25(7), 075503 (2014).

B. Belaissaoui, G. Cabot, M.-S. Cabot, D. Willson, and E. Favre, ”An energetic analysis of CO2 capture on a gas turbine combining flue gas recirculation and membrane separation,” Energy 38(1), 167– 175 (2012).