Journal of the European Optical Society - Rapid publications, Vol 9 (2014)

Spectral signatures of fluorescence and light absorption to identify crude oils found in the marine environment

E. Baszanowska, Z. Otremba

Abstract


To protect the natural marine ecosystem, it is necessary to continuously enhance knowledge of environmental contamination, including oil pollution. Therefore, to properly track the qualitative and quantitative changes in the natural components of seawater, a description of the essential spectral features describing petroleum products is necessary.

This study characterises two optically-different types of crude oils (Petrobaltic and Romashkino) – substances belonging to multi-fluorophoric systems. To obtain the spectral features of crude oils, the excitation-emission spectroscopy technique was applied. The fluorescence and light absorption properties for various concentrations of oils at a stabilised temperature are described. Both excitation-emission spectra (EEMs) and absorption spectra of crude oils are discussed. Based on the EEM spectra, both excitation end emission peaks for the wavelengthindependent fluorescence maximum (Exmax/ Emmax) – characteristic points for each type of oil – were identified and compared with the literature data concerning typical marine chemical structures.

 

 


© The Authors. All rights reserved. [DOI: 10.2971/jeos.2014.14029]

Full Text: PDF

Citation Details


Cite this article

References


M. Fingas, The Basics of Oil Spill Cleanup (CRC Press Taylor & Francis Group, Boca Raton, 2013).

http://balticseanow.turkuamk.fi/index.php/ the-number-of-oil-spills-down-to-half-in-the-baltic-sea/

C. D. Geddes, and J. R. Lakowicz (eds.), Reviews in Fluorescence 2005 (Springer, New York, 2005).

T. D. Downare, and O. C. Mullins, ”Visible and near-infrared fluorescence of crude oils,” Appl. Spectrosc. 49, 754–764 (1995).

M. Fingas, and C. Brown, Review of oil spill remote sensors (Seventh International Conference on Remote Sensing for Marine and Coastal Environments, Miami, 20–22 May 2002).

Z. Wang, and S. Stout, Oil Spill Environmental Forensics: Fingerprinting and Source Identification (Elsevier, Boston, 2007).

N. Skou, B. Sorensen, and A. Poulson, ”A new airborne dual frequency microwave radiometer for mapping and quantifying mineral oil on the sea surface, in Proceedings to the Second Thematic Conference on Remote Sensing for Marine and Coastal Environments, II559-II565 (ERIM Conferences, Ann Arbor,1994).

O. Zielinski, J. A. Busch, A. D. Cembella, K. L. Daly, J. Engelbrektsson, A. K. Hannides, and H. Schmidt, ”Detecting marine hazardous substances and organisms: sensors for pollutants, toxins and pathogens,” Ocean Sci. 5, 329–349 (2009).

J. Bublitz, A. Christophersen, and W. Schade, ”Laser-based detection of PAHs and BTXE aromatics in oil polluted soil samples,” Fresenius J. Anal. Chem. 355, 684–686 (1996).

J. Bublitz, and W. Schade, ”Multiwavelength laser-induced fluorescence spectroscopy for quantitative classification of aromatic hydrocarbons,” Proc. SPIE 2504, 265–277 (1995).

U. Frank, ”A review of fluorescence spectroscopic method for oil spill source identification,” Toxicol. Environ. Chem. Rev. 2, 163–185 (1978).

S. Patsayeva, ”Fluorescent remote diagnostics of oil pollutions: oil in films and oil dispersed in the water body,” EARSeL Adv. Remote Sens. 3, 170–178 (1995).

L. Poryvkina, S. Babichenko, and O. Davydova, ”SFS characterisation of oil pollution in natural water,” in Proceedings to 5th International Conference on Remote Sensing for Marine and Coastal Environments, 520–524 (Michican Tech Research Institute, San Diego, 1998).

E. Baszanowska, and Z. Otremba, ”Spectroscopic methods in application to oil pollution detection in the sea,” J. KONES 19, 15–20 (2012).

T. A. Dolenko, V. V. Fadeev, I. V. Gerdova, S. A. Dolenko, and R. Reuter, ”Fluorescence diagnostics of oil pollution in coastal marine waters by use of artificial neural networks,” Appl. Opt. 41, 5155–5166 (2002).

H. Visser, ”Teledetection of the thickness of oil films on polluted water based on the oil fluorescence properties,” Appl. Opt. 18, 1746–1749 (1979).

E. Baszanowska, O. Zielinski, Z. Otremba, and H. Toczek, ”Influence of oil-in-water emulsions on fluorescence properties as observed by excitation-emission spectra,” J. Europ. Opt. Soc. Rap. Public. 8, 13069 (2013).

R. Karpicz, A. Dementjev, Z. Kuprionis, S. Pakalnis, R. Westphal, R. Reuter, and V. Gulbinas, ”Oil spill fluorosensing lidar for inclined onshore or shipboard operation,” Appl. Opt. 45, 6620–6625 (2006).

J. Vasilescu, L. Marmureanu, E. Carstea, and C. P. Cristescu, ”Oil spills detection from fluorescence lidar measurements,” U. P. B. Sci. Bull., Series A 72, 149–154 (2010).

A. G. Abroskin, S. E. Nol’de, V. V. Fadeev, and V. V. Chubarov, ”Laser fluorimetry determination of emulsified-dissolved oil in water,” Sov. Phys. Dokl. 33, 215–217 (1988).

E. Baszanowska, Z. Otremba, H. Toczek, and P. Rohde, ”Fluorescence spectra of oil after it contacts with aquatic environment,” J. KONES 20, 29–34 (2013).

Z. Otremba, E. Baszanowska, H. Toczek, and P. Rohde, ”Spectrofluorymetry in application to oil-in-water emulsion characterization,” J. KONES 18, 317–321 (2011).

P. G. Coble, ”Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy,” Mar. Chem. 51, 325–346, (1996).

P. G. Coble, ”Marine optical biogeochemistry: the chemistry of ocean color,” Chem. Rev. 107, 402–418 (2007).

P. G. Coble, ”Colored dissolved organic matter in seawater,” in Subsea Optics and Imaging, J. Watson, and O. Zielinski, eds., 98–118 (1st edition, Woodhead Publishing, Cambridge, 2013).

V. Drozdowska, W. Freda, E. Baszanowska, K. Rud´z, M. Darecki, J. Heldt, and H. Toczek, ”Spectral properties of natural and oil polluted Baltic seawater – results of measurements and modelling,” Eur. Phys. J. Special Topics 222, 2157–2170 (2013).

P. Kowalczuk, J. Sto´n-Egiert, W. J. Cooper, R. F. Whitehead, and M. J. Durako, ”Characterization of chromophoric dissolved organic matter (CDOM) in the Baltic Sea by excitation emission matrix fluorescence spectroscopy,” Mar. Chem. 96, 273–292 (2005).

J. H. Christensen, A. B. Hansen, J. Mortensen, and O. Andersen, ”Characterization and matching of oil samples using fluorescence spectroscopy and parallel factor analysis,” Anal. Chem. 77, 2210– 2217 (2005).

Operation manual, Aqualog Horiba, rev. A (Horiba Scientific, 2011).

R. N. Conmy, P. G. Coble, J. Farr, A. M. Wood, K. Lee, W. S. Pegau, I. D. Walsh, et al.,”Submersible optical sensors exposed to chemically dispersed crude oil: wave tank simulations for improved oil spill monitoring,” Environ. Sci. Technol. 48, 1803–1810 (2014).