Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

A direct comparison between a MEMS deformable mirror and a liquid crystal spatial light modulator in signal-based wavefront sensing

A. R. Jewel, V. Akondi, B. Vohnsen

Abstract


Aberrations degrade the performance of optical systems in terms of resolution and signal-to-noise ratio. This work explores the feasibility of a signal-based wavefront sensor, which employs a search algorithm to estimate Zernike coefficients of given aberrations. The search algorithm was supported by Gaussian interpolation. The performance of two different reflective wavefront correctors, a deformable mirror and a spatial light modulator in signal-based wavefront sensing, was compared under identical conditions. The aberrations were introduced by using another identical high resolution reflecting spatial light modulator. The performance was quantified using the Strehl ratio, which was estimated from simultaneously acquired Hartmann-Shack measurements of Zernike coefficients. We find that the spatial light modulator can be a good alternative to the deformable mirror in terms of dynamic range and sensitivity, when speed is not a limiting factor. Distinct advantages of the spatial light modulator are high number of pixels and a larger active area.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13073]

Full Text: PDF

Citation Details


Cite this article

References


F. S. Wouters, P. J. Verveer, and P. I. H. Bastaiens, ”Imaging biochemistry inside cells,” Trends Cell Biol. 11, 203–211 (2001).

M. Peter, and S. M. Ameer-Beg, ”Imaging molecular interactions by multiphoton FLIM,” Biol. Cell 96, 231–236 (2004).

M. J. Booth, D. Debarre, and A. Jesacher, ”Adaptive Optics for Biomedical Microscopy,” Opt. Photon. News 23, 22–29 (2012).

X. Tao, B. Fernandez, O. Azucena, M. Fu, D. C. Garcia, Y. Zuo, D. Chen, et al., ”Adaptive optics confocal microscopy using direct wavefront sensing,” Opt. Lett. 36, 1062–1064 (2011).

J. B. Pawley, Handbook of biological confocal microscopy (Springer, New York, 2006).

M. J. Booth, ”Adaptive optics in microscopy,” Philos. Trans. Soc. A 365 , 2829–2843 (2007).

J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University Press, Oxford, 1998).

M. Shaw, K. O’Holleran, and C. Paterson, ”Investigation of the confocal wavefront sensor and its application to biological microscopy,” Opt. Express 21, 19353–19362 (2013).

G. Cao, and Xin Yu, ”Accuracy analysis of a Hartmann-Shack wavefront sensor operated with a faint object,” Opt. Eng. 33, 2331–2335 (1994).

A. Vyas, M. B. Roopashree, and B. R. Prasad, ”Advanced Methods for Improving the Efficiency of a Shack Hartmann Wavefront Sensor” in Topics in Adaptive Optics, R. K. Tyson, ed., 167–196 (InTech, Rijeka, 2012).

M. J. Booth, ”Wavefront sensor less adaptive optics for large aberrations,” Opt. Express 32, 5–7 (2007).

O. Albert, L. Sherman, G. Mourou, T. B. Norris, and G. Vdovin, ”Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy,” Opt. Lett. 25, 52–54 (2000).

L. Sherman, J. Y. Ye, O. Albert and T. B. Norris, ”Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65–71 (2002).

P. N. Marsh, D. Burns, and J. M. Girkin, ”Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11, 1123–1130 (2003).

A. C. F. Gonte and R. Dandliker, ”Optimization of single-mode fiber coupling efficiency with an adaptive membrane mirror,” Opt. Eng. 41, 1073–1076 (2002).

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, ”Exploration of the optimization algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy,” Microsc. Res. Technol. 67, 36–44 (2005).

M. J. Booth, ”Wavefront sensor-less adaptive optics: a modelbased approach using sphere packings,” Opt. Express 14, 1339–1352 (2006).

M. Vorontsov, ”Decoupled stochastic parallel gradient descent optimization for adaptive optics: integrated approach for wave-front sensor information fusion,” J. Opt. Soc. Am. A 19, 356–368 (2002).

M. J. Booth, M. A. A. Neil, R. Juskaitis and T. Wilson, ”Adaptive aberration correction in a confocal microscope,” Proc. Nat. Acad. Sci. 99, 5788–5792 (2002).

J. Antonello, M. Verhaegen, R. Fraanje, T. van Werkhoven, H. C. Gerritsen, and C. U. Keller, ”Semidefinite programming for model-based sensorless adaptive optics,” J. Opt. Soc. Am. A 29, 2428–2438 (2012).

D. Debarre, M. J. Booth and T. Wilson, ”Image-based adaptive optics for imaging and microscopy,” Proc. SPIE 6888, 68880A (2008).

M. Shaw, K. O’Holleran, K. Ryan, and C. Paterson, ”Adaptive optics fluorescence microscopy of C. elegans,” http://www.npl.co.uk/upload/pdf/ adaptive-optics-fluorescence-microscopy-of-c-elegans.pdf

J. Garcia-Marquez, J. E. A. Landgrave, N. Alcala-Ochoa, and C. Perez-Santos, ”Recursive wavefront aberration correction method for LCoS spatial light modulators,” Opt. Laser Eng. 49, 743–748 (2011).

J. M. Bueno, B. Vohnsen, L. Roso, and P. Artal, ”Temporal wavefront stability of an ultrafast high-power laser beam,” Appl. Optics 48, 770–777 (2009).

J. Schwiegerling, ”Scaling pseudo-Zernike expansion coefficients to different pupil sizes,” Opt. Lett. 36, 3076–3078 (2011).

J. Schwiegerling, ”Description of Zernike Polynomials” www.visualopticslab.com/OPTI515L/Background/Zernike% 20Notes%2017Feb2011.pdf