Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

Linear phase retrieval for real-time adaptive optics

A. Polo, A. Haber, S. F. Pereira, M. Verhaegen, H. P. Urbach

Abstract


We developed a fast phase retrieval algorithm that is suitable for real-time applications such as adaptive optics. The phase retrieval model is developed by linearising the pupil function in the approximation of small aberrations and is valid for low-NA focused field. The linear model in conjunction with a particular choice for the position of the single out-of-focus measurement plane and an efficient control algorithm, significantly reduces the computation time for phase retrieval. The experimental results demonstrate the validity of the described approach for fast correction of aberrations.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13070]

Full Text: PDF

Citation Details


Cite this article

References


N. Hubin, and L. Noethe, ”Active optics, adaptive optics, and laser guide stars,” Science 262, 1390–1394 (1993).

M. J. Booth, ”Adaptive optics in microscopy,” Philos. T. R. Soc. A. 365, 2829–43 (2007).

M. R. Foreman, C. L. Giusca, P. Török, and R. K. Leach, ”Phaseretrieved pupil function and coherent transfer function in confocal microscopy,” J. Microsc. 251, 99–107 (2013).

A. Roorda, F. Romero-Borja, W. Donnelly, H. Queener, T. Hebert, and M. Campbell, ”Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405 (2002).

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, ”Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13, 8532–8546 (2005).

S.-W. Bahk, E. Fess, B. E. Kruschwitz, and J. D. Zuegel, ”A highresolution, adaptive beam-shaping system for high-power lasers,” Opt. Express 18, 9151–63 (2010).

F. Staals, A. Andryzhyieuskaya, H. Bakker, M. Beems, J. Finders, T. Hollink, J. Mulkens, et al., ”Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner,” Proc. SPIE 7973, 79731G–13 (2011).

A. Haber, A. Polo, I. Maj, S. Pereira, H. Urbach, and M. Verhaegen, ”Predictive control of thermally induced wavefront aberrations,” Opt. Express 21, 21530 (2013).

J. W. Hardy, Adaptive optics for astronomical telescopes (Oxford University Press, New York, 1998).

R. A. Gonsalves, ”Phase Retrieval,” Proc. SPIE 528, 202–215 (1985).

J. R. Fienup, ”Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett. 3, 27–29 (1978).

R. A. Gonsalves, ”Phase retrieval by differential intensity measurements,” J. Opt. Soc. Am. A 4, 166–170 (1987).

J. R. Fienup, J. C. Marron, T. J. Schulz, and J. H. Seldin, ”Hubble Space Telescope characterized by using phase-retrieval algorithms,” Appl. Optics 32, 1747–67 (1993).

D. J. Lee, M. C. Roggemann, and B. M. Welsh, ”Cramer-Rao analysis of phase-diverse wave-front sensing,” J. Opt. Soc. Am. A 16, 1005–1015 (1999).

O. E. Gawhary, A. Wiegmann, N. Kumar, S. F. Pereira, and H. Urbach, ”Through-focus phase retrieval and its connection to the spatial correlation for propagating field,” Opt. Express 21, 1662–1669 (2013).

A. Polo, S. F. Pereira, and H. Urbach, ”Theoretical analysis for best defocus measurement plane for robust phase retrieval,” Opt. Lett., 38 812 (2013).

C. U. Keller, V. Korkiakoski, N. Doelman, R. Fraanje, R. Andrei, and M. Verhaegen, ”Extremely fast focal-plane wavefront sensing for extreme adaptive optics,” Proc. SPIE 8447, 844721–844721–10 (2012).

C. S. Smith, R. Marinic, A. J. D. Dekker, M. Verhaegen, V. Korkiakoski, C. U. Keller, and N. Doelman, ”Iterative linear focalplane wavefront correction,” J. Opt. Soc. Am. Aosa 30, 2002–2011 (2013).

D. A. Bristow, M. Tharayil, and A. G. Alleyne, ”A survey of iterative learning control,” IEEE Contr. Syst. Mag. 26, 96–114 (2006).

D. Malacara and W. T. Welford, Optical shop testing (John Wiley Sons, Hoboken, 2006).

T. I. Kuznetsova, ”On the phase retrieval problem in optics,” Sov. Phys. Uspekhi 31, 364–371 (1988).

W. J. Wild, ”Linear phase retrieval for wave-front sensing,” Opt. Lett. 23, 573–5 (1998).

J. Braat, P. Dirksen, and A. J. E. M. Janssen, ”Assessment of an extended Nijboer-Zernike approach for the computation of optical point-spread functions,” J. Opt. Soc. Am. A 19, 858–870 (2002).

J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, Englewood, 2005).

M. Verhaegen and V. Verdult, Filtering and system identification: a least square approach (Cambridge University Press, Cambridge, 2007).

M. Born, and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Cambridge University Press, Cambridge, 1999).

Adaptica Srl, Saturn user manual, http://www.adaptica.com/site/ en/pages/saturn.

A. Polo, A. Haber, S. F. Pereira, M. Verhaegen, and H. P. Urbach, ”An innovative and efficient method to control the shape of pushpull membrane deformable mirror,” Opt. Express 20, 27922–27932 (2012).

A. Haber, A. Polo, C. S. Smith, S. F. Pereira, P. Urbach, and M. Verhaegen, ”Iterative learning control of a membrane deformable mirror for optimal wavefront correction,” Appl. Optics 52, 2363 (2013).

A. Haber, A. Polo, S. Ravensbergen, H. P. Urbach, and M. Verhaegen, ”Identification of a dynamical model of a thermally actuated deformable mirror,” Opt. Lett. 38, 3061–3064 (2013).