Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

The phase shift induced by a single atom in free space

M. Sondermann, G. Leuchs


In this article we theoretically study the phase shift a single atom imprints onto a coherent state light beam in free space. The calculations are performed in a semiclassical framework. The key parameters governing the interaction and thus the measurable phase shift are the solid angle from which the light is focused onto the atom and the overlap of the incident radiation with the atomic dipole radiation pattern. The analysis includes saturation effects and discusses the associated Kerr-type non-linearity of a single atom.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13052]

Full Text: PDF

Citation Details

Cite this article


G. Leuchs, and M. Sondermann, ”Light-matter interaction in free space,” J. Mod. Opt. 60, 36–42 (2013).

S. A. Aljunid, M. K. Tey, B. Chng, T. Liew, G. Maslennikov, V. Scarani, and C. Kurtsiefer, ”Phase shift of a weak coherent beam induced by a single atom,” Phys. Rev. Lett. 103, 153601 (2009).

M. Pototschnig, Y. Chassagneux, J. Hwang, G. Zumofen, A. Renn, and V. Sandoghdar, ”Controlling the phase of a light beam with a single molecule,” Phys. Rev. Lett. 107, 063001 (2011).

G. Hétet, L. Slodiˇcka, N. Röck, and R. Blatt, ”Faraday rotation of a tightly focussed beam from a single trapped atom,” arXiv:1212.0810 [physics.atom-ph] (2012).

Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, ”Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710–4713 (1995).

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuˇckovi´c, ”Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, ”Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).

S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, ”Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett. 107, 243601 (2011).

M. Sondermann, R. Maiwald, H. Konermann, N. Lindlein, U. Peschel, and G. Leuchs, ”Design of a mode converter for efficient light-atom coupling in free space,” Appl. Phys. B 89, 489–492 (2007).

N. Lindlein, R. Maiwald, H. Konermann, M. Sondermann, U. Peschel, and G. Leuchs, ”A new 4p-geometry optimized for focusing onto an atom with a dipole-like radiation pattern,” Laser Phys. 17, 927–934 (2007).

G. Zumofen, N. M. Mojarad, V. Sandoghdar, and M. Agio, ”Perfect reflection of light by an oscillating dipole,” Phys. Rev. Lett. 101, 180404 (2008).

M. K. Tey, G. Maslennikov, T. C. H. Liew, S. A. Aljunid, F. Huber, B. Chng, Z. Chen, V. Scarani, and C. Kurtsiefer, ”Interfacing light and single atoms with a lens,” New J. Phys. 11, 043011 (2009).

G. Zumofen, N. M. Mojarad, and M. Agio, ”Light scattering by an oscillating dipole in a focused beam,” Nuovo Cimento C 31, 475–485 (2009).

S. J. van Enk, ”Atoms, dipole waves, and strongly focused light beams,” Phys. Rev. A 69, 043813 (2004).

K. Koshino, ”Multiphoton wave function after Kerr interaction,” Phys. Rev. A 78, 023820 (2008).

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997).

M. Sondermann, N. Lindlein, and G. Leuchs, ”Maximizing the electric field strength in the foci of high numerical aperture optics,” arXiv:0811.2098 [physics.optics] (2008).

Erik W. Streed, Andreas Jechow, Benjamin G. Norton, and David Kielpinski, ”Absorption imaging of a single atom,” Nat. Commun. 3, 933 (2012).

A. Jechow, B. G. Norton, S. Händel, V. Bl¯ums, E. W. Streed, and D. Kielpinski, ”Controllable optical phase shift over one radian from a single isolated atom,” Phys. Rev. Lett. 110, 113605 (2013).

T. Tyc, ”Gouy phase for full-aperture spherical and cylindrical waves,” Opt. Lett. 37, 924–926 (2012).

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, ”Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008).

D. Meschede, Optik, Licht und Laser (Teubner, Wiesbaden, 2005).

A. Golla, B. Chalopin, M. Bader, I. Harder, K. Mantel, R. Maiwald, N. Lindlein, M. Sondermann, and G. Leuchs, ”Generation of a wave packet tailored to efficient free space excitation of a single atom,” Eur. Phys. J. D 66, 190 (2012).

G. Leuchs, K. Mantel, A. Berger, H. Konermann, M. Sondermann, U. Peschel, N. Lindlein, and J. Schwider, ”Interferometric null test of a deep parabolic reflector generating a Hertzian dipole field,” Appl. Optics 47, 5570–5584 (2008).

P. D. Maker, R. W. Terhune, and C. M. Savage, ”Intensitydependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507–509 (1964).

R. Y. Chiao, E. Garmire, and C. H. Townes, ”Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).

R. W. Boyd, Nonlinear optics (Academic Press, San Diego, 1992).

L. Hilico, C. Fabre, S. Reynaud, and E. Giacobino, ”Linear inputoutput method for quantum fluctuations in optical bistability with two-level atoms,” Phys. Rev. A 46, 4397–4405 (1992).

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, ”Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006).