Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

Novel trends in optical non-destructive testing methods

P. Huke, R. Klattenhoff, C. von Kopylow, R. B. Bergmann


Non-destructive testing (NDT) describes a wide range of methods for measuring and comparing physical quantities against a nominal condition. In this paper we describe and compare different optical NdT (ONDT)-methods with respect to their characteristics and capability for different measurement tasks. ONDT may be specified in two categories, passive and active. The NDT principles of the first category just use a measurement method like view inspection, elipsometry or reflectometry to detect defects which are easily accessible. The principles of the second category use an excitation force, such as heat or mechanical vibration introduced by transducers to detect hidden defects. This category can be specified into two subcategories. The first subcategory "time-/depth-resolved" includes measurement methods delivering detailed information of the geometric features of a hidden defect. Therefore the excitation of the material and the detection of the reaction have to provide a time step which enables depth-solved measurements. Phase-resolved thermography and laser ultrasound are examples for this category. The second subcategory "Integrating" includes measurement technique coupled with an excitation that enables detection of defects but not evaluation of their geometric features. Examples for these measurement techniques are shearography, reflectometry, vibrometry and thermography coupled with excitation method like simple heating or loading with a constant force. We demonstrate experimental results obtained using methods developed in our institute and highlight directions of further development.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13043]

Full Text: PDF

Citation Details

Cite this article


C. Hellier, Handbook of nondestructive Evaluation (McGraw-Hill, New York, 2012).

A. Blouin, S. Kruger, D. Levesque, and J. Monchalin, ”Applications of Laser-Ultrasonics to the Automotive Industry,” in Proceedings to 17th World Conference on Non Destructive Testing, (WCNDT, Shanghai, 2008).

P. Rastogi, and D. Inaudi, Trends in optical Non-destructive testing and inspection (Elsevier, Amsterdam, 2000).

N. Rütthard, Rechnerunterstützter Erfahrungsrückfluß in der Prozesskette der Blechteilefertigung und -verarbeitung (Universität Hannover, Hannover, 2001) .

R. Bergmann, and P. Huke, ”Advanced Methods for optical Nondestructive Testing,” in Optical Imaging and Metrology: Advanced Technologies, 393–412 (Wiley, New Jersey, 2012) .

P. Parlevliet, H.Bersee, and A. Beukers, ”Residual stresses in thermoplastic composites - A study of the literature - Part II: Experimental techniques,” Compos. Part A-Appl. S. 38, 651–665 (2007).

J. Svanberg, and J. Holmberg, ”An experimental investigation on mechanisms for manufactuirng induced shape distortions in homogeneous and balanced laminates,” Compos. Part A-Appl. S. 32, 827–838 (2001).

C. Ramadas, K. Balasubramaniam, M. Joshi, and C. Krishnamurthy, ”Interaction of guided Lamb waves with an asymmetrically located delamination in a laminated composite plate,” Smart Mater. Struct. 19 (2010).

S. John , ”Non-Destructive Testing of Fibre-Reinforced Plastics Composites,” Elsevier Applied Science 2, 57–68 (1987)

F. Santos, M. Vaz, and J. Monteiro, ”A new set-up for pulsed digital shearography applied to defect detection in composite structures,” Opt. Laser Eng. 42, 131–140 (2004).

M. Seale, and B. Smith, ”Lamb wave propagation in thermally damaged composites,” Rev. Prog. Q. 15A, 261–266 (1996).

R. H. Bossi, K. R. Housen, W. B. Shepherd, and M. E. Voss, US Patent 6,848,321 B2 (2005)

R. Bossi, K. Housen, and W. Shepherd, ”Using Shock Loads to Measure Bonded Joint Strength,” Mater. Eval. 60, 1333–1338, (2002)

G. Youssef, C. Moulet, M. Goorsky, and V. Gupta, ”Inter-wafer bonding strength characterization by laser-induced shock waves” J. Appl. Phys. 111, 094902 (2012)

K. Boving, NDE Handbook (Butterworths, London, 2001).

G. Udupa, W. Jun, and K. Bryan, ”A combined fiber optic digital shearography and holography system for defect inspection in Siwafers,” Proc. SPIE 5852, (2005)

G. Udupa, B. Ngoi, H. Goh, and M. Yusoff, ”Defect detection in unpolished Si wafers by digital shearography,” Meas. Sci. Technol. 15, 35–43 (2004).

J. Monchalin, C. Neron, J. Bussiere, P. Bouchard, C. Padioleau, R. Heon, M. Choquet, J. Aussel, G. Durou, and J. Nilson, ”Laserultrasonics: from the laboratory to the shop floor,” Adv. Perform. Mater. 5, 7–23 (1998).

O. Focke, A. Hildebrand, C. Kopylow, and M.Calomfirescu, ”Inspection of lamb waves in carbon fiber composites using shearographic interferometry,” Proc. SPIE 6934, (2008)

P. Huke, O. Focke, C. Falldorf, C. von Kopylow, and R. Bergmann, ”Contactless Defect Detection using Optical Methods for Non Destructive Testing,” in Proceedings of the 2nd Symposium on NdT in Aerospace (DGZfP, Hamburg, 2011).

S. Sundin, D. Artymowicz, ”Direct measurement of grain size in low-carbon steels using the laser ultrasonic technique,” Metall. Mater. Trans. A 33A, 687–691 (2002).

E. Savio, L. De Chiffre, and R. Schmitt, ”Metrology of freeform shaped parts,” CIRP Ann.-Manuf. Techn. 56, 810–835 (2007).

F. Chen, G. Brown, and M. Song, ”Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).

F. Charrière, J. Kühn, T. Colomb, F. Monfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. Depeursinge, ”Characterization of microlenses by digital holographic microscopy,” Appl. Optics 45, 829–835 (2006).

IAEA , Handbook on non-destructive testing of concrete structures (CRC Press, Boca Raton, 2002).

R. Bergmann, T. Bothe, C. Falldorf, P. Huke, M. Kalms,and C. von Kopylow, ”Optical metrology and optical non-destructive testing from the perspective of objectcharacteristics,” Proc. SPIE 7791, 1–15 (2010)

W. Osten, ”Digital Image Processing for Optical Metrology” in Springer Handbook of Experimental Solid Mechanics, Ed. Sharpe, 481–563 (Springer, Berlin, 2008).

A. Moura, A. Lomonosov, and P. Hess, ”Depth evaluation of surface-breaking cracks using laser-generated transmitted Rayleigh waves,” J. Appl. Phys. 103, 084911 (2008).

C. Falldorf, S. Osten, C. Kopylow, and W. Jüptner, ”Shearing interferometer based on the birefringent properties of a spatial light modulator,” Opt. Lett. 34, 2727–2729 (2009).

B. Kemper, S. Kosmeier, P. Langehanenberg, S. Przibilla, C. Remmersmann, S. Stürwald, and G. von Bally, ”Application of 3D tracking, LED illumination and multiwavelength techniques for quantitative cell analysis in digital holographic microscopy,” Proc. SPIE 7184, 71840R (2009)

P. Maldaque, Nondestructive evaluation of Materials by Infrared Thermography (Springer Verlag, Berlin, 1995).

W. Osten, W. Jüptner, and U. Mieth, ”Knowledge based evaluation of fringe patterns for automatic fault detection,” SPIE Interferometry, 256–268 (1993).

W. Osten, F. Elandalousi, and W. Jüptner, ”Recognition by synthesis - a new approach for the recognition of material faults in HNDE,” Proc. SPIE 2861, 220–224 (1996).

C. Furlong, and J. Pryputniewicz, ”Hybrid, experimental and computational, investigation of mechanical components,” Proc. SPIE 2861, 13–24 (1996).

K. Telschow, V. Deason, R. Schley, and S. Watson, ”Imaging of Lamb Waves in Plates for Quantitative Determination of Anisotropy Using Photorefractive Dynamic Holography,” Rev. Prog. Q. 18 (1999).

P. Hess, and A. Lomonosov, ”Solitary surface acoustic waves and bulk solitons in nanosecond and picoseconds laser ultrasonics,” Ultrasonics 50, 167–171 (2010).

P. Huke, S. Herrmann, C. Falldorf, and R. Klattenhoff, ”Hilfreiche Blicke unter die Oberfläche,” Restauro 8, 28–32 (2012).

P. Maldaque, Nondestructive evaluation of Materials by Infrared Thermography (Springer Verlag, Berlin, 1995).

A. Dillenz, ”Ultraschall Burst-Phasen-Thermografie,” MP Material Testing 43, 1–2 (2001).

C. Zöcke, Quantitative analysis of defects in composite material by means of optical lockin thermography (Universität des Saarlandes and Universitä Paul-Verlaine Mertz, Saarbrücken, 2009).

G. Riegert, Induktions-Lockin-Thermografie ein neues Verfahren zur zerstörungsfreien Prüfung (Institut für Kunststofftechnik der Universität Stuttgart, Stuttgart, 2007).

C. von Kopylow, O. Focke, and M. Kalms, ”Laser Ultrasound - A flexible Tool for the Inspection of complex CFK Components and Welded Seams,” Proc. SPIE 6616, 66163J, (2007).

C. Scruby, and L. Drain, Laser Ultrasonics:Techniques and Application (Inst. of Physics Pub., Bristol, 1990).

P. Zhang, C. Ying, and J. Shen, ”Directivity patterns of laser thermoelastically generated ultra-sound in metal with consideration of thermal conductivity,” Ultrasonics 35, 233–240 (1997).

M. Dubois, P. Lorraine, B. Venchiarutti, A. Bauco, and R. Filkins, ”Optimization of temporal and optical penetration depth for lasergeneration of ultrasound in polymer-matrix composites,” Rev. Prog. Q., 287–294 (2000).

G. Shi, C. Chen, J. Lin, X. Xie, and X. Chen, ”Narrowband Ultrasonic Detection with High Range Resolution: Separating Echoes via Compressed Sensing and Singular Value Decomposition,” IEEE T. Ultrason. Ferr. 59, 10 (2012).

T. Stepinski, and M. Jonsson, ”Narrowband ultrasonic spectroscopy for NDE of layered structures,” in Proceedings of 16th World Congress of NDT (ABENDE, BINDT, Munich, 2004).

T. Stratoudaki, J. Hernandez, M. Clark, and M. Somekh, ”Cheap optical transducers (CHOTs) for narrowband ultrasonic applications,” Meas. Sci. Technol. 18, 843–851 (2007).