Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

Radiative properties of carriers in CdSe-CdS core-shell heterostructured nanocrystals of various geometries

S. Zhou, L. Dong, S. Popov, A. T. Friberg

Abstract


We report a model on core-shell heterostructured nanocrystals with CdSe as the core and CdS as the shell. The model is based on one-band Schrödinger equation. Three different geometries, nanodot, nanorod, and nanobone, are implemented. The carrier localization regimes with these structures are simulated, compared, and analyzed. Based on the electron and hole wave functions, the carrier overlap integral that has a great impact on stimulated emission is further investigated numerically by a novel approach. Furthermore, the relation between the nanocrystal size and electron-hole recombination energy is also examined.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13042]

Full Text: PDF

Citation Details


Cite this article

References


O. Svelto, D. Hanna, Principle of Laser Engineering (Plenum Publishers, New York, 1998).

V. Klimov, Nanocrystal Quantum Dots (CRC Press, Boca Raton, 2010).

J. Müller, J. M. Lupton, P. Lagoudakis, F. Schindler, R. Koeppe, A. Rogach, and J. Feldmann, ”Wave function engineering in elongated semiconductor nanocrystals with heterogeneous carrier confinement,” Nano Lett. 5, 2044–2049 (2005).

S. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L. Balet, I. Bezel, P. Anikeeva, et al., ”Light amplification using inverted core/shell nanocrystals: towards lasing in the single-exciton regime,” J. Phys. Chem. B 108, 10625–10630 (2004).

V. Klimov, S. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. McGuire, and A. Piryatinski, ”Single-exciton optical gain in semiconductor nanocrystals,” Nature 447, 441–446 (2007).

V. Klimov, A. Mikhailovsky, S. Xu, A. Malko, J. Hollingsworth, C. Leatherdale, H. Eisler, and M. Bawendi, ”Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).

Y. Luo, and L. Wang, ”Electronic structures of the CdSe/CdS coreshell nanorods,” ACS Nano 4, 91–98 (2010).

R. Melnik, and M. Willatzen, ”Bandstructures of conical quantum dots with wetting layers,” Nanotechnology 15, 1–8 (2004).

A. Sugunan, Y. Zhao, S. Mitra, L. Dong, S. Li, S. Popov, S. Marcinkevicius, et al., ”Synthesis of tetrahedral quasi-type-II CdSe-CdS coreshell quantum dots,” Nanotechnology 22, 425202 (2011).

L. Dong, A. Sugunan, J. Hu, S. Zhou, S. Li, S. Popov, M. Toprak, et al., ”Photoluminescence from quasi-type-II spherical CdSe-CdS core-shell quantum dots,” Appl. Optics 52, 105–109 (2013).

M. Lupo, F. Sala, L. Carbone, M. Zavelani-Rossi, A. Fiore, L. Luer, D. Polli, et al., ”Ultrafast electron-hole dynamics in core/shell CdSe/CdS dot/rod nanocrystals,” Nano Lett. 8, 4582–4587 (2008).

A. Rogach, T. Klar, J. Lupton, A. Meijerinkd, and J. Feldmanna, ”Energy transfer with semiconductor nanocrystals,” J. Mater. Chem. 19, 1208–1221 (2009).

D. BenDaniel, and C. Duke, ”Space-charge effects on electron tunneling,” Phys. Rev. 152, 683–692 (1966).

A. Nethercot, ”Prediction of Fermi energies and photoelectric thresholds based on electronegativity concepts,” Phys. Rev. Lett. 33, 1088–1091 (1974).

C. Trager-Cowan, P. Parbrook, B. Henderson, and K. O’Donnell, ”Band alignments in Zn(Cd)S(Se) strained layer superlattices,” Semicond. Sci. Tech. 7, 536-541 (1992).

K. O’Donnell, P. Parbrook, F. Yang, X. Chen, D. Irvine, C. Trager- Cowan, B. Henderson, et al., ”The optical properties of wide bandgap binary II-VI superlattices,” J. Cryst. Growth 117, 497–500 (1992).

X. Peng, M. Schlamp, A. Kadavanich, and A. Alivisatos, ”Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc. 119, 7019–7029 (1997).

J. Haus, H. Zhou, I. Honma, and H. Komiyama, ”Quantum confinement in semiconductor heterostructure nanometer-size particles,” Phys. Rev. B 47, 1359–1365 (1993).