Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

The effect of nanoparticle size on thermal diffusivity of gold nano-fluid measured using thermal lens technique

E. Shahriari, W. M. Mat Yunus, R. Zamiri


A dual beam mode-mismatched thermal lens method has been employed to investigate the dependence of thermal diffusivity of gold nanofluid on nanoparticles sizes. The samples were prepared at various sizes by utilizing the gamma radiation method. In the dual beam mode-mismatched thermal lens a diode laser (532 nm) was used as an excitation beam and a He-Ne laser with the beam output at 632.8 nm was used as a probe beam. Thermal diffusivity of gold nano-fluid increased with the increasing particle sizes ranging from 10.4 to 29.6 nm.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13026]

Full Text: PDF

Citation Details

Cite this article


D. Compton, L. Cornish, E. Van der Lingen, ”The third order nonlinear optical properties of gold nanoparticles in glasses,” Gold Bull. 36, 51–58 (2003).

P. N. Prasad, Nanophotonics (Wiley, New York, 2004).

S. E. Maiga, C. T. Nguyen, and N. Galanis, ”Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension,” Int J. Numer. Method. H.16, 275–292 (2006).

D. S. Wen, and W. Ding, ”Natural convective heat transfer of suspensions of titanium dioxide nanoparticles (Nanofluids),” IEEE. T. Nanotechnol.5, 220–227 (2006).

S. P. Jang, and S. U. S. Choi, ”Cooling performance of a microchannel heat sink with nanofluids,” Appl. Therm. Eng. 26, 2457–2463 (2006).

K. H. Schifferli, J. J. Scwartz, A. T. Santos, S. G. Zhang, and J. M. Jacobson, ”Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna,” Nature 415, 152–156 (2002).

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezck, ”Technol Nanoshell-Enabled Photonics-based Imaging and Therapy of Cancer,” Cancer. Treat. 3, 33–40 (2004).

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, ”Photo-thermal Tumor Ablation in Mice Using Near Infraredabsorbing Nanoparticles,” Cancer. Lett. 209, 171–176 (2004).

G. Huttmann, and R. Birngruber, ”On the possibility of highprecision photothermal microeffects and the measurement of fast thermal denaturation of proteins,” IEEE J. Sel. Top. Quant. 5, 954–962 (1999).

J. L. J. Perez, R. G. Fuentes, J. F. S. Ramirez, and A. C. Orea, ”Study of gold nanoparticles effect on thermal diffusivity of nanofluids based on various solvents by using thermal lens spectroscopy,” Eur. Phys. J.-Spec. Top. 153, 159–161 (2008).

J. L. J. Perez, R. G. Fuentes, E. M. Alvarad, E. R. Gallegos, A. C. Orea, J. T. Cordova, and J. G. M. Alvarez, ”Enhancement of the thermal transport in a culture medium with Au nanoparticles,” Appl. Surf. Sci. 255, 701–702 (2008).

Q. Xue, and W. M. Xu, ”A Model of Thermal Conductivity of Nanofluids with Interfacial Shells,” Mater. Chem. Phys. 90, 298–301 (2005).

C. V. Bindhu, S. S. Harilal, V. P. N. Nampoori, and C. P. G. Vallabhan, ”Solvent effect on absolute fluorescence quantum yield of rhodamine 6G determined using transient thermal lens technique,” Mod. Phys. Lett. B 13, 563–576 (1999).

J. L. J. Perez, J. F. S. Ramirez, R. G. Fuentes, A. C. Orea, and J. L. H. Perez, ”Enhanced of the R6G Thermal Diffusivity on Aggregated Small Gold Particles,” Braz. J. Phys. 36, 1025–1028 (2006).

E. Shahriari, W. M. M. Yunus, K. Naghavi, and Z. A. Talib, ”Effect of concentration and particle size on nonlinearity of Au nano-fluid prepared by g (60Co) radiation,” Opt. Commun. 283, 1929–1932 (2010).

S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley, New York, 1996).

J. Shen, M. L. Baesso, and R. D. Snook, ”Three-dimensional model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry and time-resolved measurements of thin film samples,” J. Appl. Phys. 75, 3738–3748 (1994).

T. Imasaka, K. Sakaki, and N. Ishibashi, ”Determination of iron (II) with 2-nitroso-5-diethylaminophenol by thermal lens spectrophotometry using a semiconductor laser as a light source,” Anal. Chim. Acta. 243, 109–113 (1991).

J. Shen, and R. D. Snook, ”Thermal lens measurement of absolute quantum yields using quenched fluorescent samples as references,” Chem. Phys. Lett. 155, 583–586 (1989).

J. M. Harris, and N. J. Dovichi, ”Thermal lens calorimetry,” Anal. Chem. 52, 695–706 (1980).

J. Shen, R. D. Lowe, and R. D. Snook, ”Two-beam Thermal Lens Spectrometer for Ultra-trace Analysis,” Chem. Phys. 18, 403–408 (1998).

J. Shen, A. J. Soroka, and R. D. Snook, ”A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry based on probe beam profile image detection,” J. Appl. Phys. 78, 700–708 (1995).

M. Sparks, ”Optical distortion by heated windows in high power laser systems,” J. Appl. Phys. 42, 5029–5046 (1971).

J. Turkevich, ”Colloidal Gold Part II: Colour, Coagulation, Adhesion, Alloying and Catalytic Properties,” Gold Bull. 18, 125–131 (1985).

J. L. Jiménez-Pérez, J. F. Sánchez-Ramírez , D. Cornejo-Monroy, R. Gutierrez-Fuentes, J. A. Pescador Rojas, A. Cruz-Orea, M. A. Algatti, et al., ”Photothermal Study of Two Different Nanofluids Containing SiO2 and TiO2 Semiconductor Nanoparticles,” Int. J. Thermophys. 33, 69 (2012).

D. G. Cahill, W. K. Ford, and K. E. Goodson, ”Nanoscale thermal transport,” J. Appl. Phys. 93, 793–818 (2003).

C. W. Nan, R. Birringer, and D. R. Clarke, ”Effective thermal conductivity of particulate composites with interfacial thermal resistance,” J. Appl. Phys. 81, 6692–6699 (1997).

Z. B. Ge, D. G. Cahill, and P. V. Braun, ”Thermal conductance of hydrophilic and hydrophobic interfaces,” Phys. Rev. Lett. 96, 186101–186104 (2006).