Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

Refractive index determination of SiO2 layer in the UV/Vis/NIR range: spectrophotometric reverse engineering on single and bi-layer designs

L. Gao, F. Lemarchand, M. Lequime


In this paper we use spectrophotometric measurements and a Clustering Global Optimization procedure to determine the complex refractive index of SiO2 layer from 250 nm to 1250 nm. A special commercial optical module allows the reflection and transmission measurements to be made under exactly the same illumination and measurement conditions. We compare the index determination results obtained from two different single layer SiO2 samples, with high and low index glass substrates, respectively. We then determine the refractive index of SiO2 for a bi-layer design in which the first deposited layer is Ta2O5. The corresponding solutions are discussed and we show that the real part of the complex refractive index obtained for a bi-layer is slightly different to that found for a single layer investigation. When SiO2 is included inside a thin film stack, we propose the use of an index determination method in which a bi-layer is used for the real part of the complex refractive index, and single layer determination is used for the imaginary part of the refractive index in the UV range.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13010]

Full Text: PDF

Citation Details

Cite this article


J. A. Dobrowolski, F. C. Ho, and A. Waldorf, ”Determination of optical constants of thin film coating materials based on inverse synthesis,” Appl. Opt. 22, 3191–3200 (1983).

J. C. Manifacier, J. Gasiot, and J. P. Fillard,”A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phys. E. Sci. Instrum. 9, 1002–1004 (1976).

R. Swanepoel, ”Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E. Sci. Instrum. 16, 1214–1222 (1983).

R. Swanepoel, ”Determining refractive index and thickness of thin films from wavelengh measurements only,” J. Opt. Soc. Am. A. 2, 1339–1343 (1985).

I. Ohlidal, D. Franta, M. Ohlidal, and K. N. til, ”Optical characterization of nonabsorbing and weakly absorbing thin films with the wavelengths related to extrema in spectral reflectances,” Appl. Opt. 40, 5711–5717 (2001).

M. Kar, ”Errorminimization in the envelope method for the determination of optical constants of a thin film,” Surf. Interface Anal. 42, 145–150 (2010).

S. Humphrey, ”Direct calculation of the optical constants for a thin film using a midpoint envelope,” Appl. Opt. 46, 4660–4666 (2007).

L. Gao, F. Lemarchand, and M. Lequime, ”Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering,” Opt. Express 20, 15734–15751 (2012). Grade_Fused_Silica.pdf

R. R. Willey, Practical Production of Optical Thin Films (Second Edition, Willey Optical Consultants, Charlevoix, 2012).

P. G. Verly, A. V. Tikhonravov, and M. K. Trubetskov,”Refinement algorithm for the synthesis of inhomogeneous optical coatings,” Appl. Opt. 36, 1487–1495 (1997).

A. V. Tikhonravov, T. V. Amotchkina, M. K. Trubetskov, R. J. Francis, V. Janicki, J. Sancho-Parramon, H. Zorc, and V. Pervak, ”Optical characterization and reverse engineering based on multiangle spectroscopy,” Appl. Opt. 51, 245–254 (2012).

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, and D. Ristau, ”Optical parameters of oxide films typically used in optical coating production,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2010), paper ThA6.

E. D. Palik,Handbook of Optical Constants of Solids (Academic Press, New York, 1985).

B. Mangote, L. Gallais, M. Zerrad, F. Lemarchand, L. H. Gao, M. Commandré, and M. Lequime, ”A high accuracy femto-/picosecond laser damage test facility dedicated to the study of optical thin films,” Rev. Sci. Instrum. 83, 013109 (2012).

H. A. Macleod, Thin-film Optical Filters (Institute of Physics Publishing, Bristol and Philadelphia, 2001).

G. E. Jellison, and F. A. Modine, ”Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996).

G. E. Jellison, V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, and J. B. Caughman, ”Characterization of thin film amorphous semiconductors using spectroscopic ellipsometry,” Thin Solid Films 377-378, 68–73 (2000).

B. v. Blanckenhagen, D. Tonova, and J. Ullmann, ”Application of the Tauc–Lorentz formulation to the interband absorption of optical coating materials,” Appl. Opt. 41, 3137–3141 (2002).

M. Kildemo, R. Ossikovski, and M. Stchakovsky, ”Measurement of absorption edge of thick transparent substrates using incoherent reflection model and spectroscopic UV-visible–near IR ellipsometry,” Thin Solid Films 313-314, 108–113 (1998).

Z. G. Hu, Z. M. Huang, Y. N. Wu, S. H. Hu, G. S. Wang, J. H. Ma, and J. H. Chu, ”Optical characterization of ferrelectric Bi3.25La0.75Ti3O12 thin films,” Eur. Phys. J. B. 38, 431–436 (2004).

R. D. L. Kronig, ”On the theory of dispersion of x-rays,” J. Opt. Soc. Am. 12, 547–556 (1926).

L. Gao, F. Lemarchand, and M. Lequime, ”Reverse engineering from spectrophotometric measurements: performances and efficiency of different optimization algorithms,” Appl. Phys. A. 108, 87–889 (2012).

T. Csendes, ”Nonlinear parameter estimation by global optimization - efficiency and reliability,” Acta Cybernetica 8, 361–370 (1988).

L. Gao, F. Lemarchand, and M. Lequime, ”Comparison of different dispersion models for single layer optical thin film index determination,” Thin Solid Films 520, 501–509 (2011).

K. D. Hendrix, and J. Oliver, ”Optical interference coatings design contest 2010: solar absorber and Fabry-Perot etalon,” Appl. Opt. 50, C286–C300 (2011).

M. Tilsch, and K. Hendrix, ”Optical interference coatings design contest 2007: triple bandpass filter and nonpolarizing beam splitter,” Appl. Opt. 47, C55–C69 (2008).

M. Tilsch, K. Hendrix, and P. Verly, ”Optical interference coatings design contest 2004,” Appl. Opt. 45, 1544–1554 (2006).

A. O’Keefe, and D. A. G. Deacon, ”Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).

I. H. Malitson, ”Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965).

S. Xiong, W. Huang, and Y. Zhang, ”The properties of IAD oxide optical coatings,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2004), paper MB3.