Journal of the European Optical Society - Rapid publications, Vol 8 (2013)

Holographic superresolution using spatial light modulator

A. Hussain, J. L. Martínez, J. Campos

Abstract


This paper describes a technique of superresolution using a reflective mode spatial light modulator, a coherent source of light, and a transmission mode object placed in the input plane of an imaging system, in particular we are using for the demonstration a 4f system. The spatial light modulator (SLM) enables for creating tilted plane wave illumination and it also permits adding constant phases of 0, π/2, 3π/2 and π. The angle of illumination created by the SLM is defined according to the dimension of aperture placed at the Fourier plane of 4f optical system. For each defined angle of illumination created by the SLM four holograms corresponding to the transmission mode object are recorded. This system is capable of retrieving phase and amplitude information of the images, corresponding to each impinging illumination. By simply adding these complex images a super resolved image is obtained.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2013.13007]

Full Text: PDF

Citation Details


Cite this article

References


W. Lukosz, ”Optical systems with resolving powers exceeding the classical Limit,” J. Opt. Soc. Am. 56, 1463–1471 (1966).

U. Mitsuhiro, and S. Takuso, ”Superresolution by holography,” J. Opt. Soc. Am. 61, 418–419 (1971).

U. Mitsuhiro, S. Takuso, and K. Masato, ”Superresolution by multiple superposition of image holograms having different carrier frequencies,” J. Mod. Optic. 20, 403–410 (1973).

V. Mico, Z. Zalevsky, C. Ferreira, and J. García, ”Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express 16, 19260–19270 (2008).

M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, ”Super-resolution in digital holography by a two dimensional dynamic phase grating,” Opt. Express 16 ,17107–17118 (2008).

K. Chu, Z. J. Smith, S. Wachsmann-Hogiu, and S. Lane, ”Super resolved spatial light interference microscopy,” J. Opt. Soc. Am. A 29, 344–351 (2012).

A. H. Phan, J. H. Park, and N. Kim , ”Super-resolution digital holographic microscopy for three dimensional sample using multipoint light source llumination,” Jpn. J. Appl. Phys. 50, 092503 (2011).

A. Mudassar, A. R. Harvey, A. H. Greenaway, and J. D. C. Jones, ”Resolution beyond classical limits with spatial frequency heterodyning,” Chin. Opt. Lett. 4, 148–151 (2006).

A. A. Mudassar, and A. Hussain, ”Super-resolution of active spatial frequency heterodyning using holographic approach,” Appl. Optics 49, 3434–3441 (2010).

A. Hussain, and A. A. Mudassar, ”Holography based super resolution,” Opt. Commun. 285, 2303–2310 (2012).

R. Langoju, A. Patil, and P. Rastogi, ”Super-resolution Fourier transform method in phase shifting interferometry,” Opt. Express 13, 7160–7173 (2005).

Y. Kuznetsova, A. Neumann and S. R. J. Brueck, ”Imaging interferometric microscopy–approaching the linear systems limits of optical resolution,” Opt. Express 15, 6651–6663 (2007).

V. Mico, Z. Zalevsky, P. Garcia-Martinez, and J. Garcia, ”Singlestep superresolution by interferometric imaging,” Opt. Express 12, 2589–2596 (2004) .

I. Moreno, A. Lizana, A. Márquez, C. Iemmi, E. Fernández, J. Campos, and M. J. Yzuel, ”Time fluctuations of the phase modulation in a liquid crystal on silicon display: characterization and effects in diffractive optics,” Opt. Express 16, 16711–16722 (2008) .