Journal of the European Optical Society - Rapid publications, Vol 7 (2012)

All-optical silicon simplified passive modulation

R. Aharoni, O. Baharav, L. Bidani, M. Sinvani, D. Elbaz, Z. Zalevsky


In this paper we present an all-optical silicon based modulator suggested also for high power operation and for pulse picker application being used as part of fiber lasers system. The paper theoretically and experimentally investigates several new and important insights involving the dependence of the relative transmission on the pump pulse energy for different finesse values of the constructed cavity as well as the dependence of the response rate of the device to the pump wavelength due to coexistence of two physical recombination processes: fast surface effect and slow bulk recombination. To adapt the constructed silicon based cavity to be used in lasers applications, we aligned the pump and the signal beams to co-propagate through the device while the usage of a cavity allowed a low power pump to yield a significant extinction ratio at the output of the device.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2012.12029]

Full Text: PDF

Citation Details

Cite this article


R. A. Soref, and B. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Elect. 23, 123-129 (1987).

S. Stepanov, and S. Ruschin, "Modulation of light by light in siliconon- insulator waveguides," Appl. Phys. Lett. 83, 5151-5153 (2003).

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keill, and T. Franck, "High speed silicon Mach-Zehnder modulator," Opt. Express 13, 3129-3135 (2005).

V. M. N. Passaro, and F. Dell'Olio, "Scaling and Optimization of MOS Optical Modulators in Nanometer SOI Waveguides," IEEE T. Nanotechnol. 7, 401-408 (2008).

C. A. Barrios, V. R. Almeida, and M. Lipson, "Low-powerconsumption short-length and high-modulation-depth silicon electrooptic modulator," J. Lightwave Technol. 21, 1089-1098 (2003).

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "Alloptical control of light on a silicon chip," Nature 431, 1081-1084 (2004).

S. Schnenberger, T. Stferle, N. Moll, R. F. Mahrt, M. S. Dahlem, T. Wahlbrink, J. Bolten,, "Ultrafast all-optical modulator with femtojoule absorbed switching energy in silicon-on-insulator," Opt. Express 18, 22485-22496 (2010).

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, "Silicon optical modulators," Nat. Photonics 4, 518-525 (2010).

S. Preble, Q. Xu, B. Schmidt, and M. Lipson, "Ultrafast all-optical modulation on a silicon chip," Opt. Lett. 30, 2891-2893 (2005).

K. Narayanan, A. Elshaari, and S. Preble, "Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides," Opt. Express 18, 9809-9814 (2010).

A. Kumar, and V. Rastogi, "Design and analysis of dual-shape-core large-mode-area optical fiber," Appl. Optics 50, 119-124 (2011).

C. Wirth, O. Schmidt, A. Kliner, T. Schreiber, R. Eberhardt, and A. Tnnermann, "High-power tandem pumped fiber amplifier with an output power of 2.9kW," Opt. Lett. 36, 3061-3063 (2011).

K. Danekar, A. Khademian, and D. Shiner, "Blue laser via IR resonant doubling with 71% fiber to fiber efficiency," Opt. Lett. 36, 2940-2942 (2011).

R. Zhou, Y. Ju, Y. Zhang, and Y. Wang, "High-powered millijoule pulse energy Tm3+-doped fiber amplifier at 2.05 m," Chin. Opt. Lett. 9, 071401-071401 (2011).

P. Hbner, C. Kieleck, S. D. Jackson, and M. Eichhorn, "Highpower actively mode-locked sub-nanosecond Tm3+-doped silica fiber laser," Opt. Lett. 36, 2483-2485 (2011).

D. B. S. Soh, S. E. Bisson, B. D. Patterson, and S. W. Moore, "Highpower all-fiber passively Q-switched laser using a doped fiber as a saturable absorber: numerical simulations," Opt. Lett. 36, 2536-2538 (2011).

M. Gorjan, R. Petkovek, M. Marin_ek, and M. _opi_, "High-power pulsed diode-pumped Er:ZBLAN fiber laser," Opt. Lett. 36, 1923-1925 (2011).

E. Gaubas, and J. Vanhellemont, "A simple technique for the separation of bulk and surface recombination parameters in silicon," J. Appl. Phys. 80, 6293 (1996).

G. Coppola, A. Irace, G. Breglio, and A. Cutolo, "All-silicon modemixing router based on the plasma-dispersion effect," J. Opt. A-Pure Appl. Op. 3, 346-354 (2001).

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).

T. S. Moss, G. J. Burrell, and B. Ellis, Semiconductor Opto- Electronics (Butterworths, London, 1975).

R. A. Soref, and B. R. Bennett, "Kramers-Kronig analysis of electrooptical switching in silicon," Proc. SPIE 704, 32-37 (1987).

B. Jalali, and S. Fathpour, "Silicon Photonics," J. Lightwave Technol. 24, 4600-4615 (2006).

M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).

R. A. Soref, and P. J. Lorenzo, "All-silicon active and passive guided-wave components for l=1.3 and 1.6 _m," IEEE J. Quantum Elect. 22, 873-879 (1986).

S. M. Ryvkin, Photoelectric Effects in Semiconductors (Consultants Bureau, New York, 1964).

R. A. Smith, Semiconductors (Cambridge University Press, Cambridge, 1978).

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "Alloptical control of light on a silicon chip," Nature 431, 1081-1084 (2004).

K. Preston, P. Dong, B. Schmidt, and M. Lipson, "High-speed all-optical modulation using polycrystalline silicon microring resonators," Appl. Phys. Lett. 92, 15-17 (2008).

A. Chin, K. Y. Lee, B. C. Lin, and S. Horng, "Picosecond photoresponse of carriers in Si ion-implanted Si," Appl. Phys. Lett. 69, 653-655 (1996).

B. Cowan, "Optical Damage Threshold of Silicon for Ultrafast Infrared Pulses," AIP Conf. Proc. 877, 837-843 (2006).

J. R. Chelikowsky, and M. I. Cohen "Electronic structure of silicon," Phys. Rev. B 10, 5095-5107 (1974).

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 _m wavelength," Appl. Phys. Lett. 80, 416-418 (2002).

X. Wang, Z.H. Shen, J. Lu, and X.W. Ni, "Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes," J. Appl. Phys. 108, 033103 (2010).

G. Cocorullo, and I. Rendina, "Thermo-optical modulation at 1.5 _m in a silicon etalon," Electron. Lett. 28, 83-85 (1992).

S. Manipatruni, R. K. Dokania, B. Schmidt, N. Sherwood-Droz, C. B. Poitras, A. B. Apsel, and M. Lipson, "Wide temperature range operation of micrometer-scale silicon electro-optic modulators," Opt. Lett. 33, 2185-2187 (2008).

M. A. Green, and M. J. Keevers, "Optical properties of intrinsic silicon at 300 K," Prog. Photovoltaics 3, 189-192 (1995).