Journal of the European Optical Society - Rapid publications, Vol 7 (2012)

Distribution of temperature in a single lens due to absorption of light and heat conduction: an adaptive solver

M. J. Moritz

Abstract


We develop an algorithm for the solution of the stationary heat-equation in a single lens due to absorption of light, heat-conduction and transfer of the heat to the environment while we assume rotational symmetry for the whole situation. The proceeding is based on an easy to implement finite difference scheme, which is best suited for rectangular areas. Therefore, we have to transform the heat equation and the boundary conditions from the original domain, i.e. the surface of section of the lens by the aid of tensor methods to a rectangle. So the algorithm generates a grid, which adopts automatically to the actual shape of the lens. In this sense, we characterize the method as adaptive. In the examples, we investigate the effect of a high-transmission glass on the distribution of temperature and further demonstrate the adjustment to a realistic lens shape with a strong deviation from a spherical surface in form of a kink near the edge. We compare the results with a simple model for the distribution of temperature and show the strong dependency of the results on the transmission of the materials.

© The Authors. All rights reserved. [DOI: 10.2971/jeos.2012.12028]

Full Text: PDF

Citation Details


Cite this article

References


M. Abramowitz, and I. A. Stegun, Handbook of Mathematical Functions (Dover Publications, New York, 1972).

L. C. Andrews, and R. L. Phillips, Mathematical Techniques for Engineers and Scientists (SPIE PRESS, Washington, 2003).

H. M. Anita, Numerical Methods for Scientists and Engineers (Birkhäuser Verlag, Basel, 2002).

M. A. Arain, V. Quetschke, J. Gleason, L. F. Williams, M. Rakhmanov, J. Lee, R. J. Cruz, et.al, "Adaptive beam shaping by controlled thermal lensing in optical elements," Appl. Optics 46, 2153 (2007).

A. Burvall, A. Smith, and C. Dainty, "Elementary functions, propagation of partially coherent light," J. Opt. Soc. Am. A 26, 1721 (2009).

J. A. Campbell, and F. Rainer, "Optical glasses for high-peak-power laser applications," Proc. SPIE 1761, 246 (1992).

G. F. Carey, and W. F. Spotz, "Higher-order compact mixed methods," Commun. Numer. Meth. En. 13, 553 (1997).

S. Celestin, Z. Bonaventura, B. Zeghondy, A. Bourdon, and P. Ségur, "The use of the ghost fluid method for Poisson's equation to simulate streamer propagation in point-to-plane and point-to-point geometries," J. Phys. D Appl. Phys. 42, 065203 (2009).

P. C. Y. Chang, J. G. Walker, and K. I. Hopcraft, "Raytracing in absorbing media," J. Quant. Spectrosc. Ra. 96, 327 (2005).

W. Dahmen, and A. Reusken, Numerik für Ingenieure und Naturwissenschaftler (Springer-Verlag, Berlin, 2008).

H. Dallmann, and K.-H. Elster, Einführung in die höhere Mathematik; Bd. III (Gustav Fischer Verlag, Jena, 1992).

A. Gatej, U. Thombansen, and P. Loosen, "Simulation des thermischen Linseneffekts in hochbelasteten Lasersystemen," Photonik 5, 54 (2011).

L. Gonzalez, S. Guha, J. W. Rogers, and Q. Sheng, "An Effective z-Stretching Method for Paraxial Light Beam Propagation Simulations," arXiv, 1006.1607v1 (2010).

H. Gross, Modellierung von Lichtquellen und Propagation partiell kohärenter Strahlung durch optische Systeme: Abschlussbericht; Verbundvorhaben: Charakterisierung, Modellierung und Propagation der Strahlung realer Lichtquellen in optischen Systemen (RIOS) (Carl Zeiss SMT AG, Oberkochen, 2007).

C. Großmann, and H.-G. Roos, Numerische Behandlung partieller Differentialgleichungen (Teubner, Leipzig, 2005).

H. Haiyang, F. Zhengxiu, and L Ye, "Measuring Weak Absorptance of Thin Film Coatings by Surface Thermal Lensing Technique," Laser Phys. 10, 633 (2000).

P. Herwig, U. Klotzbach, M. Walther, J. Hauptmann, A. Wetzig, and E. Beyer, "Aberrations induced by High Brightness Lasers," Physics Procedia 12, 779 (2011).LiM 2011.

C. Hong, F. Zhi-gang, C. Shou-qian, and C. Yi-ming, "Impact of the temperature gradient on optical system parameters, modeling and analysis," Proc. SPIE 7506, 75060 (2009).

A. Hornberg, "Propagation of Gaussian beams," Laser Technik Journal 2, 75 (2005).

I. H. Hutchinson, "Cartesian Coordinates, Oblique Boundary, Finite Differences and Interpolation," arXiv, 1105.1356v1 (2011).

R. Jedamzik, "Brillant imaging. Glasses with high transmission play a major role in many modern day applications," Optik & Photonik 6, 31 (2011).

M. Kar, and B. S. Verma, "Improvements in the determination of extinction coefficients of a thin film using an envelope method," J. Opt. A-Pure Appl. Opt. 7, 599 (2005).

M. Klee, and R. Plonsby, "Finite difference solutions for biopotentials of axially symmetric cells," Biophys. J. 12, 1661 (1972).

C. A. Klein, "High-power CW Laser Windows, Edge-Cooled or Face- Cooled?," Proc. SPIE (High Heat Flux Engineering) 1739, 230 (1993).

C. A. Klein, "High-energy laser windows, case of fused silica," Opt. Eng. 49, 091006 (2010).

G. A. Korn, and T. M. Korn, Mathematical Handbook for Scientists and Engineers (Dover Publications, New York, 2000).

H. Kozaki, and S. Sakurai, "Characteristics of a Gaussian beam at a dielectric interface," J. Opt. Soc. Am. 68, 508 (1978).

E. Kreyszig, Advanced Engineering Mathematics (John Wiley & Sons, Hoboken, 2006).

J. Kuhnert, and S. Tiwari, "Grid free method for solving the Poisson equation," Berichte des Fraunhofer ITWM 25 (2001).

M.-C. Lai, and Y.-H. Tseng, "A fast iterative solver for the variable coefficient diffusion equation on a disk," J Comput. Phys. 208, 196 (2005).

L. D. Landau, and E. M. Lifschitz, Lehrbuch der Theoretischen Physik; Bd. VII, Elastizitätstheorie (Akademie Verlag, Berlin, 1991).

C. B. Lang, and N. Pucker, Mathematische Methoden in der Physik Elsevier, Amsterdam, 2005).

N. N. Lebedev, I. P. Skalskaya, and Y. S. Uflyand, Worked problems in applied mathematics (Dover Publications, New York, 1979).

W. Macke, Thermodynamik und Statistik (Akademische Verlagsgesellschaft Geest und Portig, Leipzig, 1963).

O. Märten, R. Kramer, H. Schwede, S. Wolf, and V. Brandl, "Focus Analysis, Part 1," Laser & Photonics 2, 48 (2008).

A. Miks, and J. Novak, "Propagation of Gaussian beam in optical system with aberrations," Optik - Int. J. Light Electron Opt. 114, 437 (2003).

W. F. Mitchell, and M. A. McClain, "A Survey of hp-Adaptive Strategies for Elliptic Partial Differential Equations," in Recent Advantages in Computational and Applied Mathematics, T. E. Simons, ed., 227 (Springer, Berlin, 2011).

I. Miyamoto, K. Cvecek, and M. Schmidt, "Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses," Opt. Express 19, 10714 (2011).

R. M. More, and K. Kosaka, "Wave-front curvature in geometrical optics," Phys. Rev. E 57, 6127 (1998).

I. Moreno, and C.-C. Sun, "Modelling the radiation pattern of LED's," Opt. Express 16, 1808 (2008).

M. J. Moritz, "Radial distribution of temperature in a thin lens due to absorption of light and heat conduction," Optik - Int. J. Light Electron Opt. 122, 1050 (2011).

T. N. Narasimhan, "Thermal conductivity through the 19th century," Phys. Today 63, 36 (2010).

F. E. Nicodemus, "Radiance," Am. J. Phys. 31, 368 (1963).

C. T. O'Sullivan, "Newton's law of cooling - A critical assessment," Am. J. Phys. 58, 956 (1990).

T. Pang, Introduction to Computational Physics (Cambridge Universitiy Press, Cambridge, 1997).

F. Pedrotti, L. Pedrotti, W. Bausch, and H. Schmidt, Optik für Ingenieure (Springer-Verlag, Berlin, 2002).

R. Pitka, S. Bohrmann, H. Stöcker, and G. Terlecki, Physik - Der Grundkurs (Verlag Harri Deutsch, Frankfurt, 2002).

H. Qin, and J. Yang, "Novel meshless method for point set surface processing," Opt. Eng. 47, 047005 (2008).

R. Ramamoorthi, and Pat Hanrahan, "On the relationship between radiance and irradiance, determining he illumination from images of a convex Lambertian object," J. Opt. Soc. Am. A 18, 2448 (2001).

C. Schaefer, Einführung in die Theoretische Physik; Band 2, Theorie der Wärme, Molekular-kinetische Theorie der Materie (Walter De Gruyter, Berlin, 1958).

Datenblatt N-BK7, Stand 19.09.2007 schott.com.

Datenblatt N-BK7HT, Stand 20.05.2010 schott.com.

S. Schröder, M. Kamprath, A. Duparé, and A. Tünnermann, "Bulk scattering properties of synthetic fused silica at 193 nm," Opt. Express 14, 10537 (2006).

D. L. Shealy, and D. G. Burkhard, "Analytical illuminance calculation in a multi-interface optical system," Opt. Acta 22, 485 (1975).

G. G. Slyusarev, Aberration and Optical Design Theory (Institute of Physics Publishing, London, 1984).

A. Sommerfeld, Vorlesungen über Theoretische Physik; Bd. VI, Partielle Differentialgleichungen der Physik (Verlag Harri Deutsch, Frankfurt, 1978).

K. Starke, and D. Ristau, "Charakterisierung von Laseroptiken für die Femtonik," Laser Technik Journal 2, 76 (2005).

S. Tryka, "Spherical object in radiation field from Gaussian source," Opt. Express 12, 5925 (2005).

P. Twomey, C. O'Sullivan, and J. O'Riordan, "An experimental investigation of the role of radiation in laboratory bench-top experiments in thermal physics," Eur. J. Phys. 30, 559 (2009).

M. Vollmer, "Newton's law of cooling revisited," Eur. J. Phys. 30, 1063 (2009).

P. Yan, A. Xu, and M. Gong, "Numerical analysis of temperature distributions in Yb-doped double-clad fiber lasers with consideration of radiative heat transfer," Opt. Eng. 45, 124201 (2006).

S. Yildirim, "Exact and Numerical Solutions of Poisson Equation for Electrostatic Potential Problems," Math. Probl. Eng. 2008, 578723 (2008).